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OBJECTIVE 

The object ive of this program Is to carry out a research and 

development study for the synthesis of calcium superoxide and 

the evaluation of the low molecular weight alkal i  metal 

ozonides and superoxides for a i r  revltallzatlon purposes. 

ii 



I 
I ABSTRACT 

-.._ 
~ 

The s y n t h e s i s  and c h a r a c t e r i z a t i o n  o f  a l k a l i  and a l k a l i n e  e a r t h  

superoxides  and ozonides  has been continued. Various r e a c t i o n  

schemes have been i n v e s t i g a t e d  i n  an e f f o r t  t o  s , n t h e s i z e  high-  

p u r i t ;  samples of calcium superoxide.  Samples conta in ing  40 - 
I 
I 6O$ calcium superoxide were c o n s l s t e n t l ,  obtained from t h e  re- 

a c t i o n  of  aqueous hydrogen peroxide w i t h  s o l i d  calcium hydroxide 

which has been discussed i n  d e t a i l .  Tne r e a c t i o n  of calcium 

h;;droxlde w i t h  water  vapor has been cha rac t e r i zed  and i t s  

1 

I s to ich iometry  determined by t he  k i n e t i c  data obta ined .  Carbon 
I 

I 
I dioxide  absorp t ion  s t u d i e s  w i t h  sodium and calcium superoxides  
I have been c a r r i e d  out  and t h e  observed r e s p i r a t o r y  q u o t i e n t s  and 

r e a c t i o n  mechanisms have been discussed.  Magnetic s u s c e p t i -  

b i l i t y  measurements f o r  potassium ozonide and superoxide,  a s  w e l l  

as calcium superoxide,  have been obta ined .  

1 
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RESULTS OF EXPERIMENTAL STUDIES 

2 .1  SYNTHESIS OF CALCIUM SUPEROXIDE 

Work on c o n t r a c t  No. NASw-559 was amended i n  o r d e r  t o  emphasize 

s t u d i e s  of  calcium superoxide, 'which has a number of advantages 

over  o t h e r  non-regenerat ive a i r  r e v i t a l i z a t i o n  materials. 

been recognized f o r  y e a r s  t h a t  a l though superoxides  of potassium 

and sodium have been proven t o  have g r e a t  p o t e n t i a l  as a i r  r e v i -  

t a l i z a t i o n  materials i n  space cabins  and for s i n g l e  u n i t  self-  

contained breathing appara tus ,  calcium superoxide possesses  

i n h e r e n t  p r o p e r t i e s  which make it a more reliable and u s e f u l  a i r  

r e v i t a l i z a t i o n  m a t e r i a l  than  the a lkal i  metal superoxides.  

It has 

Ex- 

per i ence  has shown that when a lkal i  metal superoxides  are used, 

i n e f f i c i e n t  u t i l i z a t i o n  of superoxides  can be a problem. 

reason  f o r  t h i s  d i f f i c u l t y  is related d i r e c t l y  t o  a phenomenon 

which occurs  i n  t h e  course o f  the r e a c t i o n  of t h e  superoxide w i t h  

water vapor  

The 

2M02+HOH = 2MOH + 3/2 O2 

where M = an  a lkal i  metal. 

The a lka l i  formed f u s e s  a t  such a low temperature  t n a t  the exo- 

t h e r m i c i t y  of the r e a c t i o n  can be s u f f i c i e n t  t o  cause these 

h y d r o x i d e s  t o  melt and fuse ,  forming c l i n k e r s  of low p o r o s i t y .  

Thus, water vapor  i s  prevented from con tac t ing  the unreacted 

superoxide and r e a c t i o n  (1) is  no t  completed. T h i s  problem is  

e l i m i n a t e d  by s u b s t i t u t i n g  Ca(02)2 f o r  the a lkal i  metal superoxides .  

The higher melt ing C a ( O H ) 2  i s  formed which w i l l  n Q t  fuse  a t  the 

tempera tures  produced by t h e  F a c t i o n  and the  superoxide charge i s  

2 
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completely u t i l i z e d  w i t h  a minimum of r e a c t i o n  c o n t r o l .  

p o i n t  of KOH i s  360°C, t ha t  of NaOH i s  318OC, while C a ( O H ) 2  d e -  

composes a t  5 8 0 0 ~ .  

storage capac i ty  of C a ( 0 2 ) ~  i s  37% greater than  KO2 and 75 greater 

than  Na02. 

The me l t ing  

I n  a d d i t i o n  t o  t h i s  important  advantage,  t h e  02 

To r e a l i z e  the  advantages of t h i s  material i n  a i r  r e v i t a l i z a t i o n  

systems, i t  b e c a m e  necessary t o  develop a method of s y n t h e s i z i n g ,  

t h l s  compound i n  high p u r i t y .  E a r l y  workers i n  t h i s  f i e l d  

succeeded i n  ob ta in ing  products  con ta in ing  only 1-1- Ca(02)2 . 
1959, p u r i t i e s  as high as 40$ were reported1* and i n  1962 bo th  o u r  

l abora to ry2  and R .  R. Miller3 a t  Naval Reactors  Laboratory r epor t ed  

s y n t h e s i s  of 50-60$ pure Ca(02)2 . 

I n  

I ts  p o t e n t i a l  u s e f u l n e s s  made 

i t  impera t ive  t ha t  s t u d i e s  be undertaken t o  prepare  higher p u r i t y  

calcium superoxide.  The fol lowing text  summarizes the s t u d i e s  made 

under t h i s  c o n t r a c t .  

2 .1 .1  

It has been demonstrated l J 2  t h a t  a lkal i  metal hydroxides w i l l  

r e a c t  wi th  aqueous hydrogen peroxide t o  form the  a l k a l i  metal 

peroxide  dihydroperoxydate.  Upon evaporat ion of excess water from 

t h i s  mixture ,  t he  l a t t e r  compound d i s p r o p o r t i o n a t e s  t o  form the 

superoxide.  T h i s  scheme was i n v e s t i g a t e d  i n  an e f f o r t  t o  p repa re  

high p u r i t y  calcium superoxide.  The o v e r a l l  r e a c t i o n  path was 

v i s u a l i z e d  as: 

React ion of Calcium Hydroxide w i t h  Hydrogen Peroxide 

C a ( O H ) 2  + H202 ( a s )  = cao2 + 2H20 

*These s u p e r s c r i p t s  refer  t o  p u b l i c a t i o n s  l i s t e d  i n  t he  back of 
t h i s  r e p o r t .  

3 



Ca02 + 2H2o2 (as) = Ca02.2H202 

ca02.2H202 = C a ( Q 2 ) 2  + 2H20 

( 3 )  

( 4 )  

Various r e a c t i o n  parameters were i n v e s t i g a t e d  and shown t o  

a f f e c t  t h e  y i e l d  of superoxide obta ined .  These parameters 

included : 

1) Concentrat ion of  H202 s o l u t i o n ,  

2)  

3 )  

4 )  

5) 

Molar r a t i o  of H202/Ca(OH)2 a 

HgO* - C a ( O H ) 2  r e a c t i o n  temperature,  

Temperature a t  which vacuum pumping i s  c a r r i e d  out ,  and 

Length of vacuum pumping time. 

The r e a c t i o n  m s  conducted i n  t h e  apparztus  shown i n  Figure 1. 

The most promising r e s u l t s  were obtained from the fol lowing 

procedure.  The aqueous hydrogen peroxide s o l u t i o n  was r a p i d l y  

a d d e d  t o  a weighed, calcium hyCroxide sample i n  a f l a t ,  open d i s h .  

The r e a c t i o n  was c o n t r o l l e d  by a l t e r n a t e l y  immersing and withdrawing 

t h e  r e a c t i o n  con ta ine r  from an i ce  ba th .  A s  soon as t h e  more 

vigorous evo lu t ion  of gas, the mixing step,  had subsided, the 

r e a c t i o n  d i s h  was quick ly  t r a n s f e r r e d  t o  tne vacuum d e s i c c a t o r .  

The elapsed time between the mixing s t e p  and the evacuat ion step 

was kept as s h o r t  as poss ib l e .  The r e a c t i o n  mixture  was then  

evacuated t o  remove the water. Observat ions w e r e  made of the 

c o l o r ,  dryness,  e t c . ,  of t he  sample and the pressure  of t he  system 

monitored wi th  t ime. 

4 
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I n  the i n i t i a l  s t u d i e s  of  t h i s  r e a c t i o n ,  which used one gram samples 

of calcium hydroxide., a number of gene ra l  c o r r e l a t i o n s  were observed: 

1) 

obtained us ing  50$ t o  87% aqueous s o l u t i o n s  of H 2 0 2 .  

H202 concent ra t ion  - High y i e l d s  of  calcium superoxide were 

Use of more 

d i l u t e  H202 s o l u t i o n s  apparent ly  suppl ied excess  water which could 

no t  be removed r a p i d l y  enough t o  prevent  i t s  r e a c t i o n  w i t h  the  

superoxide r e s u l t i n g  i n  low superoxide y i e l d s .  

2 )  

found t o  produce the best yields of' C a ( O &  was 6.5:I.O. 

amount of H202 r e p r e s e n t s  a n  excess over  what i s  requi red  by the 

Molar ra t io  H202/Ca(OH)2 - The molar r a t i o  of H202 t o  C a ( O H ) 2  

This  

s to ich iometry  of r e a c t i o n s  (1) and (2 ) .  The excess  was requi red  

s i n c e  some H202 was lost as a r e s u l t  of the heat generated i n  

r e a c t i o n  w i t h  C a ( O H ) 2  

3) 
Ca(OH)2 - H202 r e a c t i o n  was caused t o  occur  a t  temperatures  nea r  

React ion temperatures  - Best r e s u l t s  were obtained when t h e  

OOC. 

4 )  Vacuum pumping temperature  - Decreases i n  Ca(02)2 y i e l d  were 

found as the temperature  of the d i s p r o p o r t i o n a t i o n  r e a c t i o n  was 

e l e v a t e d  above room temperature.  Our b e s t  r e s u l t s  w e r e  obtained 

i n  the temperature  range of ooc t o  room temperature.  

5) 
of t he  s t u d i e s  of the  e f f e c t  of pumping time on t h e  y i e l d  and p u r i t y  

of the calcium superoxide product r e v e a l e d  c e r t a i n  t r e n d s  which are 

Effect  of pumping time on the product  - The pre l iminary  r e s u l t s  

d i scussed  below: 

6 



For p r e p a r a t i o n s  c a r r i e d  a t  room temperature ,  the  per iod  of 

vacuum d e s i c c a t i o n  was varied from 1 t o  21 hours .  Af te r  

approximately one hour  i t  appeared tha t  a l l  l i q u i d  had been 

removed. The y i e l d s  of Ca(02)*  w e r e  s i g n i f i c a n t l y  lower i n  

nea r ly  a l l  ca ses  when pumping was d iscont inued  be fo re  t h e  

end o f  2-1/2 hours .  

appeared t o  have no s i g n i f i c a n t  e f f e c t  on the  y i e l d  of 

Ca(02)2 . 

Pumping resumed a f t e r  about  5 hours 

I n  o r d e r  t o  o b t a i n  informat ion  concerninz t h e  

r e a c t i o n  mechanism, t h e  pressure  was monitored dur ing  t h e  

per iod  of  vacuum des i cca t ion .  The e x a c t  r e a c t i o n  cond i t ions  

were not  always the  same. F o r  example, temperature  va r i ed  

a few degrees and r e a c t a n t  weights  va r i ed  from run t o  run.  

However, I n  a l l  of these syntheses  t h e  same molar r a t i o  of 

H202 t o  C a ( O H ) 2  was used (6 .5 : l )  and t h e  H202 was always 50% 

aqueous s o l u t i o n .  Figure 2 i l l u s t r a t e s  t h e  t y p i c a l  r e s u l t  

when the p res su re  of t h e  system, as monitored by t h e  McLeod 

gauge, i s  p l o t t e d  versus  t ime. The following f e a t u r e s  were 

observed i n  most cases:  

a )  I n i t i a l l y ,  a rap id  decrease i n  system p res su re  was observed.  

During t h i s  pe r iod ,  water and some hydrogen peroxide were 

evolved.  

c o l d  t r a p .  ) After approximately t h i r t y  minutes,  t h e  sample 

appeared t o  be a damp, f ine ly-d iv ided  t a n  s o l i d .  A s h o r t  

maximum appears  i n  F i g r e  2 a t  t h i s  p o i n t .  

(Some hydrogen peroxide was found condensed I n  the  

b )  T h i s  maximum was followed by a g radua l  decrease i n  

p re s su re  f o r  about  60 minutes of pumping. The so-lid, which 

7 
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a t  t h i s  time was bone-white, t hen  produced a g radua l  p r e s s u r e  

r i se  of 1 mm. dur ing  the  ensuing 25 minutes and g r a d u a l l y  

turned ye l lowish  dur ing  t h i s  pe r lod .  

c )  After approximately 85 minutes a very rapid p r e s s u r e  r ise  

of 30 mm. o r  more was momentarily achieved.  The sample w a s  

seen  t o  e r u p t ,  presumably evo lv ing  a gas. T h i s  was followed 

by a r a p i d  decrease  i n  p re s su re ,  e v e n t u a l l y  approaching the 

l i m i t i n g  p res su re  of t h e  pumping system. 

1 )  I? 

Severa l  at tempts t o  isolate the  product  a t  the p o i n t  of 

very rap id  p re s su re  r ise ( a f t e r  about  85 minutes pumping) 

r e s u l t e d  i n  a product which when analyzed showed no a c t i v e  oxygen 

Samples which had been pumped less t h a n  85 minutes also 

showed no a c t i v e  oxygen. Unfor tuna te ly ,  i t  was not  p o s s i b l e  

t o  remove a p o r t i o n  of the r e a c t i o n  mass p e r i o d i c a l l y  f o r  

a n a l y s i s ,  while cont inuing  the  s y n t h e s i s  w i th  the bulk of 

the material. 

d )  

hour pumping time. Fur the r  evacuat ion  beyond t h e  5-hour l i m i t  

d i d  no t  r e s u l t  i n  any inc rease  i n  superoxide y i e l d .  

Four ' 'pressure  peaks" w e r e  u s u a l l y  found wi th in  a 2 t o  5 

e )  

f o r  success ive  experiments because the e x a c t  r e a c t i o n  con- 

d i t i o n s  ( tempera ture ,  r e a c t a n t  weights, pumping speed and 

e f f i c i e n c y ,  e t c . )  were n o t  always the  same. However, t h e  

t h i r d  peak was u s u a l l y  the major peak and s l i g h t  c o l o r  

changes a s s o c i a t e d  w i t h  the v i c i n i t y  of  each peak were 

reproducible. 

The p o s i t i o n  of each "p res su re  peal?' was n o t  reproducib le  

9 



f) The t r e n d s  o u t l i n e d  above are compatible wi th  the  

d i s p r o p o r t i o n a t i o n  process  a l r eady  p o s t u l a t e d  i n  equa t ion  

( 3 ) ,  i f  it is assumed t h a t  the major  p a r t  of  the d ispropor-  

t i o n a t i o n  occurs  a f t e r  85 minutes o f  pumping. 

I n  t h e  case  of vacuum pumping a t  lower  temperatures ,  the pumping 

t h e  r equ i r ed  f o r  bes t  superoxide y i e l d s  was much l o n g e r  t h a n  the 

2 t o  5 hours  referred t o  above. Thus, a t  0 - lOOC, a pumping 

pe r iod  of approximately 13 hours was requ i r ed  f o r  good superoxide 

y i e l d .  The r e l a t i v e l y  long  per iod  of evacuat ion  would be expected 

s i n c e  the  rates of r e a c t i o n ,  drying,  and d i s p r o p o r t i o n a t i o n  should 

be s lower a t  the lower temperature t h a n  a t  room temperature .  I n  

a d d i t i o n ,  the c h a r a c t e r  of the pressure- t ime curves  f o r  the O°C 

runs d i f f e r e d  from that of  the room temperature  runs ,  as shown i n  

F igu re  3. Due t o  tQe experimental  d i f f i c u l t i e s  a s s o c i a t e d  wi th  

the c o n t r o l  of temperature  and vacuum pumping rates, i t  was d i f f i c u l t  

t o  make a q u a n t i t a t i v e  i n t e r p r e t a t i o n  o f  the pressure-pumping t i m e  

data. However, q u a l i t a t i v e l y  it is u s e f u l  f o r  demonstrat ing the  

complexity of t he  mechanism involved i n  the  d i s p r o p o r t i o n a t i o n  

p rocess .  

Upon completion of the r eac t ion ,  the products  w e r e  removed from 

the desAccator  i n  a d r y  box. The superoxide con ten t  was determined 

acco rd ing  t o  the method of  Seyb and Kleinberg 4 . The peroxide 

c o n t e n t  was t h e n  determined by t i t r a t i o n  w L t h  s tandard  aqueous 

permanganate s o l u t i o n .  

The data summarized ir, Table I f o r  s e v e r a l  syn theses  confirms the 

t r e n d s  d i scussed  above. The procedure o u t l i n e d  above was 

10 
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s u c c e s s f u l  f o r  t he  p r e p a r a t i o n  of one gram ba tches  of calcium 

superoxide a t  approximately 50% p u r i t y .  However, f o r  subsequent 

work i n  t h e  c h a r a c t e r i z a t i o n  and chemical s t u d i e s  o f  calcium 

superoxide,  it was necessary  t o  improve the  technique  f o r  s c a l i n g -  

up the  r e a c t i o n .  I n c r e a s i n g  the q u a n t i t i e s  of  t he  i n i t i a l  r e a c t a n t s  

u s ing  the same appara tus  and r e a c t i o n  d i s h  r e s u l t e d  i n  a decrease 

i n  the superoxide con ten t  i n  the  product ,  u s u a l l y  below 205 p u r i t y .  

The f a c t  t h a t  t h e  s u r f a c e  area of the r e a c t i o n  d i s h  was held 

c o n s t a n t  was probably t h e  f a c t o r  l e a d i n g  t o  t h e  decrease  i n  y i e l d .  

S t u d i e s  w e r e  conducted us ing  2 ,  5, and 10 gram ba tches  of  calcium 

hydroxide and p r o p o r t i o n a l  amounts of hydrogen peroxide with the 

same experimental  s e t u p  as descr ibed above, except  as follows: 

A much larger d e s i c c a t o r  was used and t r a p  c a p a c i t y  was inc reased .  

The r e a c t i o n  d i s h  was a commercial ly-avai lable  thick-walled 

specimen d i s h  ( I . D . :  200 mm, H t :  80 mm, Cap: 1750 m l ) .  The 

hydroxide sample , a long  w i t h  t h e  hydrogen peroxide , was c h i l l e d  

a t  O°C f o r  a t  l eas t  30 minutes  p r i o r  t o  mixing. Under  these 

c o n d i t i o n s ,  the  i n i t i a l  r e a c t i o n  was less vigorous and more 

c o n t r o l l a b l e .  Products  con ta in ing  approximately 3O$ calcium 

superoxide  were c o n s i s t e n t l y  obtained w i t h  the 5 and 10 gram 

b a t c h e s .  

Although t h e  y i e l d s  i n  these s t u d i e s  were lower than  could be 

ob ta ined  under normal o p e r a t i n g  cond i t ions ,  these s t u d i e s  have 

confirmed t h a t  larger-scale p repa ra t ions  could be made wi th  

modest y i e l d s .  

14 



B e t t e r  r e s u l t s  were obtained when 11 m l .  o f  5G$ aqueous hydrogen 

peroxide was reac ted  w i t h  2 grams of calcium hydroxide.  The 

average p u r i t y  was 53.7% calcium superoxide f o r  6 runs.  

2.1.2 React ions with C a t a l y s t s  

The i n t r o d u c t i o n  of a c a t a l y s t  ( a t  the 1% l e v e l )  w i t h  the calcium 

hydroxide p r i o r  t o  mixing of the r e a c t a n t s  was also i n v e s t i g a t e d  

i n  an  e f f o r t  t o  i n c r e a s e  t h e  y i e l d  of the r e a c t i o n .  

and procedure are t h e  same as  t h a t  discussed above f o r  r o u t i n e  

syntheses .  The c a t a l y s t s  i nves t iga t ed  w e r e  C d O  and Ti02 s i n c e  

The appa ra tus  

heavy metal oxides  are known t o  c a t a l y z e  t h e  decomposition of 

hydrogen peroxide.  As shown i n  Table I, t h e  superoxide con ten t  

i n  the r e a c t i o n  product  d i d  not change s i g n i f i c a n t l y  from t h e  

r o u t i n e  syntheses  r e s u l t s .  However, t h e r e  do appear  t o  be two 

advantages t o  the use  of c a t a l y s t s  i n  t h i s  scheme. 

mixing, the r e a c t i o n s  were less vigorous than  those  without  c a t a l y s t .  

Secondly,  i t  should be noted that the y i e l d s  were c o n s i s t e n t  f o r  each  

se t  of  condi t ions .  The use  of c a t a l y s t s ,  t h e r e f o r e ,  may tend t o  

i n c r e a s e  the r e p r o d u c i b i l i t y  of a given process .  

F i r s t ,  upon 

2.1.3 

V a r i a t i o n s  of the r e a c t i o n  scheme represented  by r e a c t i o n s  ( 2 ) ,  ( 3 ) ,  

and (4 )  were i n v e s t i g a t e d .  

considered by s u b s t i t u t i n g  calcium peroxide f o r  t h e  hydroxide as 

t h e  s t a r t i n g  material. It was a n t i c i p a t e d  that t h i s  s tep would 

dec rease  the amount of water t o  be removed. A decrease i n  the 

React ion of Calcium Peroxide w i t h  Hydrogen Peroxide 

The e l i m i n a t i o n  of r e a c t i o n  ( 2 )  was 

exothermic i ty  of the i n i t i a l  r e a c t i o n  was a l s o  expected; thus ,  

probably l e s s e n i n g  the  loss of hydrogen peroxide through thermal  

de composit  ion.  



The r e a c t i o n  conditlcns which proved most p ron i s ing  w i t h  r e s p e c t  

t o  the  p u r l t y  of tke superoxide product obtained were repea ted  

us ing  calcium peroxide as the  s t a r t i n g  m a t e r i a l .  The r e a c t i o n  

between 5.2 rl. G f  5 3 $  '!-:.dro@n peroxide and one gram of calcium 

peroxide (6.5:1 mole r a t i o )  a t  room temperature  was r e l a t i v e l y  

m i l d  when compared t o  the  r e a c t i o n  of Ca(OH)2 wi th  H202. The 

vigorous bubbl ing tha t  normally occurred a t  t h i s  p o i n t  i n  t he  

prev ious  s t u d i e s  was absefit i n  these  c a s e s .  V e r y  l i t t l e  heat was 

evolved dur ing  t h i s  i n i t i a l  r e a c t i o n  as expected.  The i n i t i a l  

c o l o r  of the  mixture was yellow-tan which became l i g h t e r  dur ing  

the evacuat ion  per iod .  The f i r s t  two runs a t  room temperature  

y i e lded  products  con ta in ing  36% calcium superoxide.  

p r e p a r a t i o n s  ranged between 4 1  and  54;g calcium superoxide (average 

/ 

Seven subsequent 

48.5%). 

Two runs  were a l s o  made i n  which one gram of calcium peroxide was 

reac t ed  w i t h  5.6 m l .  of  875 hydrogen peroxide a t  O°C. 

took  p l a c e  wi th  l i t t l e  evidence of  r e a c t i o n  or h e a t  e v o l u t i o n .  

The vacuum d e s i c c a t o r  was kept  between 0 and 10°C dur ing  t h e  

evacua t ion  s t e p .  

f o r  the f i rs t  run and t h e  product contained only 16% calcium super- 

ox ide .  I n  t he  second case ,  t h e  r e a c t i o n  mixture was pumped f o r  20 

hours  and t h e  product  contained 555 calcium superoxide.  

This  mixture  

The l a t t e r  s t e p  was r e l a t i v e l y  s h o r t  ( 7  hour s )  

A t  t h i s  po in t  i t  appears  t h a t  no advantage w a s  gained,  i n  terms 

of superoxide y i e l d ,  by s u b s t i t u t i n g  calcium peroxide f o r  calcium 

hydroxide as t h e  s t a r t i n g  m a t e r i a l  i n  t h e  s y n t h e s i s  procedure.  

16 
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2.1.4 

A second v a r i a t i o n  of the  rout ine  s y n t h e s i s  scheme c a l l e d  f o r  the 

r e a c t i o n  of hydrogen peroxide with calcium e thoxide .  A c r u c i a l  

React ion of  Ethanol ic  Hydrogen Peroxide w i t h  Calcium Ethoxide 

t ep  i n  the r e a c t i o n  schemes employed above f o r  the s y n t h e s i s  of 

calcium superoxide has been t h e  removal of water, i n  p a r t i c u l a r ,  

that  formed by the d i sp ropor t iona t ion  s tep.  To inc rease  the y i e l d  

of superoxide,  a non-aqueous so lvent  was sought  that would have a 

higher  v o l a t i l i t y  than  water. Ethanol was chosen because calcium 

metal could be r e a d i l y  dissolved i n  it t o  form the  e thoxide .  I n  

the  case of a lkal i  metals, superoxides  have been produced v i a  the - 
r e a c t i o n  of l i t h ium hydroxide dissolved i n  e t h y l  a l coho l  with 

hydrogen peroxide.  22 [CAUTION: Mixtures of hydrogen peroxide 

and e thano l  ( e .g . ,  40:60 mixture) can be explos ive .  Other 51 
precau t ions  are noted i n  the fol lowing tes t  as they apply.  

Two p a t h s  were i n v e s t i g a t e d .  The f irst  p a t h  was t h e  d i s s o l u t i o n  of 

calcium metal I n  e thano l  and recovery of t h e  s o l i d  calcium e thoxide ,  

fol lowed by r e a c t i o n  o f  the l a t t e r  wi th  an e t h a n o l i c  s o l u t i o n  of 

hydrogen peroxide.  It should be noted that  t h i s  scheme was 

analagous t o  the calcium hydroxide - hydrogen peroxide r e a c t i o n  

path.  The experimental  procedure was t h e  same as descr ibed f o r  

that  s tudy.  A f t e r  the  r eac t ion  had been vacuum pumped f o r  15 

hours  a t  room t e m p e r a t u v ,  the  dry, yel low product  was recovered 

and analyzed f o r  superoxide conten t .  Two p repa ra t ions  employing 

6 m l .  of approximately 50$ e thano l i c  hydrogen peroxide and 1 gram 

o f  calcium ethoxide y i e lded  a product  conta in ing  15 t o  3@ calcium 

superoxide.  When t h e  r e a c t a n t s  were precooled,  then  mixed i n  a i r ,  

the r e a c t i o n  was c o n t r o l l e d  ve ry  easi ly  before  and dur ing  the 

early s t a g e s  of the pumping step. 



The second p a t h  involved t h e  r e a c t i o n  of e t h a n o l i c  hydrogen 

peroxide s o l u t i o n s  w i t h  e thano l i c  s o l u t i o n s  and d i s p e r s i o n s  of 

calcium e thoxide .  When s o l u t i o n  r e a c t i o n s  w e r e  s t u d i e d ,  approxi-  

mately 1 gram of calcium metal  was r e f luxed  i n  e thano l  a t  80°C 

u n t i l  d i s so lved .  The appa ra tus  is shown i n  F igure  4 .  

was f i l t e r e d  h o t  under n i t rogen .  While the r e a c t i o n  chamber was 

kept  a t  sO°C, 25 m l .  of approximately 50% hydrogen peroxide was 

a d d e d  throuzh  the a d c l t i o n  t -ure t te .  When the peroxide s o l u t i o n  

met t he  r e f l u x i n g  calcium s o l u t i o n ,  the rate of e b u l l i t i o n  i n -  

creased as evidenced by vigorous bubbl ing.  E A U T I O N :  This  

admixture can be exp los ive .  J A yel low c o l o r  appeared a t  the p o i n t  

of c o n t a c t  bu t  disappeared r ap id ly  as a white f l u x  formed i n  that  

area. The peroxide s o l u t i o n  was added  slowly over  a 15-minute 

pe r iod ,  and the  e n t i r e  r e a c t i o n  mixture  refluxed f o r  a n o t h e r  30 

minutes .  The h e a t i n g  mantle and the  condenser w e r e  t hen  removed 

and the e thano l  evaporated by vacuum d i s t i l l a t i o n .  The whi t i sh  

r e s i d u e  was pumped f o r  12 hours, then analyzed for superoxide 

c o n t e n t .  Approximately 7% calcium superoxide was found i n  three 

p roduc t s  prepared i n  t h i s  manner. 

The s o l u t i o n  

I n  a n o t h e r  series of  runs,  the  calcium e thoxide  s o l u t i o n  was allowed 

to coo l  (a  d i s p e r s i o n  of the ethoxide i n  e thano l  r e s u l t e d )  i n  a 

s ingle-neck  f l a sk  be fo re  a d d i t i o n  of t h e  peroxide s o l u t i o n .  While 

s t i r r i n g ,  25 m l .  of 5 6  e t h a n o l i c  hydrogen peroxide w e r e  s lowly 

a d d e d  t o  the  r e a c t i o n  mixture a t  about 5 O C .  ECAUTION: Again, 

t h i s  admixture may be explosive.] 

minutes .  The d i s p e r s e d  white s o l i d  became t a n n i s h  i n  c o l o r  a f t e r  

T h i s  a d d i t i o n  was made i n  two 
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a d d i t i o n  of the peroxide .  

rotary dry ing  assembly b u t  s t i l l  maintained a t  5OC. The e t h a n o l  

was removed by vacuum d i s t i l l a t i o n  and t h e  product  pumped for 11 

hours.  The d r y ,  powered, off-white ,  s o l i d  product  that  was 

recovered contained about  15$ calcium superoxide.  

The react lor ,  f lask was then  placed on a 

T h i s  s y n t h e s i s  approach cannot b e  recommended f o r  product ion  of  

high p u r i t y  calcium superoxide a t  t h i s  time for the  fo l lowing  

reasons:  

hydrogen peroxide mixtures ,  the exotherm a s s o c i a t e d  w i t h  the  calcium 

e thoxide  r e a c t i o n  w i t h  t& mix- 

the  p o t e n t i a l  hazards  involved i n  handl ing e t h a n o l  - 

and the low y i e l d s  ob ta ined .  

2.1.5 React ion of Calcium Peroxide w i t h  Ozone 

Another s y n t h e s i s  scheme which was considered involved the  r e a c t i o n  

of calcium peroxide wi th  gaseous ozone i n  a n t i c i p a t i o n  of  the 

r e a c t i o n :  

:ao2 + 203 = ~ 4 0 ~ ) ~  + 202 (5) 

The appa ra tus  used i n  t h i s  study i s  shown i n  Figure 5. The ozone 

c o n c e n t r a t i o n  du r ing  t h e  r e a c t i o n  was monitored by t a k i n g  a l i q u o t  

samples of the K I  s o l u t i o n  and t i t r a t i n g  t h e  l iberated iod ine  w i t h  

s t anda rd  t h i o s u l f a t e .  6 The i n l e t  ozone concen t r a t ion  was f i r s t  

determined by a l lowing  the gaseous ozone-oxygen stream t o  bypass 

t he  r e a c t i o n  v e s s e l .  A t  time ze ro ,  t he  gaseous stream was d i v e r t e d  

t o  pass upward through the weighed calcium peroxide sample. The 

r e a c t i o n  vesselwas thermostated a t  about room temperature .  Upon 

complet ion of t he  run, t h e  r e a c t i o n  product  was analyzed f o r  

superoxide  and peroxide content .  Typica l  r e s u l t s  are shown i n  
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Figure  6 f o r  t h e  r e a c t i o n  of calcium peroxide and ozone a t  2 3 O C .  

At t h e  s t a r t  o f  the r e a c t i o n ,  the ozone concen t r a t ion  decreased 

r a p i d l y  a t  a ra te  of about  0.60 rnin-l. 

t h e  r e a c t i o n  became d i f f u s i o n  con t ro l l ed .  Subsequent ly  the  e x i t  

ozone concent ra t ion  approached t h a t  o f  the i n l e t  gas stream, as 

shown for the  6 .5  hour  run, i n d i c a t i n g  that  the  r e a c t i o n  approached 

completion or some equi l ibr ium state.  

The rate then  subsided as 

Samples t h a t  were ozonated f o r  2 o r  6.5 hours conta ined  3 t o  9.574 

calcium superoxide.  These r e s u l t s  a re  no t  d i scouraging;  calcium 

superoxide apparent ly  was synthes ized  from t h e  peroxide by 

r e a c t i o n  w i t h  ozone. The exac t  p a t h  of t h e  r e a c t i o n  was n o t  

determined, a l though it  i s  p o s s i b l e t M  calcium ozonide a c t s  as an  

in te rmedia te  product  which r ap id ly  decomposes t o  t h e  superoxide,  

accord ingly  : 

Ca02 + 2 0 ~  = Ca(0 ) + o2 3 2  

ca(03)2 = C a ( O &  + 02 

On the  basis of  oxygen capac i ty ,  a 93% pure calcium superoxide 

product  would be equ iva len t  t o  100% sodium peroxide .  S ince  

commercial ly-avai lable  sodium superoxide i s  about  92% pure,  an  

84% pure  calcium superoxide ma te r i a l  is a l l  t ha t  would be requi red  

t o  compete w i t h  commercial sodium superoxide.  S imi l a r ly ,  a 74% 

pure  calcium superoxide ma te r i a l  would be equ iva len t ,  on t h e  basis  

of oxygen capac i ty ,  w i t h  100% pure potassium superoxide sample. 

However, i n  s p i t e  of t h e  var ious  approaches d iscussed  above, 

samples conta in ing  more than  60% calcium superoxide could not  be 
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obtained c o n s i s t e n t l y .  

Thus the p u r i t y  l e v e l s  requi red  t o  put  calcium superoxide on an 

equ iva len t  basis wi th  t h e  commercial ly-avai lable  a l k a l i  metal 

superoxides  have not  been achieved i n  these  s t u d i e s .  

2.2 REACTION OF CALCIUM SUPEROXIDE WITH WATER VAPOR 

One of the more important  chemical p r o p e r t i e s  of superoxides  with 

r e s p e c t  t o  t h e i r  use as a i r  r e v i t a l i z a t i o n  m a t e r i a l s  is t h e i r  

r e a c t i o n  w i t h  water  vapor.  A l k a l i  metal superoxides  normally r e a c t  

w i t h  water, e i t h e r  l i q u i d u s  o r  gaseous,  t o  evolve oxygen and form 

t h e  corresponding hydroxide,  according t o  r e a c t i o n  (1). I n  the  

case of a l k a l i n e  e a r t h  superoxides,  such as calcium superoxide,  

the r e a c t i o n  is expected t o  proceed i n  an analogous manner: 

Ca(02)2 + H20(1) = C a ( O H ) *  + 3/202 (8) 

Kine t i c  s t u d i e s  of t h i s  r e a c t i o n  were c a r r i e d  out  a t  two d i f f e r e n t  

temperatures ,  2 4 O C  and 34OC, and a t  1005 r e l a t i v e  humidity, t o  

c h a r a c t e r i z e  t h i s  important  a i r  r e v i t a l i z a t i o n  r e a c t i o n  and t o  

v e r i f y  o r  es tab l i sh  t h e  s toichiometry of t he  r e a c t i o n .  The 

appa ra tus  used i n  t h e s e  s t u d i e s  has been descr ibed previous ly .  

The r e a c t i o n  chamber was charged wi th  apowdered sample i n  the 

v i a l ,  s toppered ,  a t t ached  t o  a gas b u r e t t e ,  and approximately 

30 m l .  water  added through the  s i d e  arm. When equi l ibr ium had 

been a t t a i n e d ,  t h e  sample w a s  exposed t o  t he  water vapor and the 

volume of oxygen evolved was monitored w i t h  t i m e .  A number of 

runs u s i n g  

and 3 4 O C ,  and a t  100% r e l a t i v e  h u m i d i t y .  

b 

Ca(02)2 were made a t  two d i f f e r e n t  temperatures ,  2 4 O C  

A t y p i c a l  run a t  2 4 O C  
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and 100s r e l a t i v e  humidity for a 0.56 gram sample c o n t a i n i n g  49 .5s  

calcium superoxide i s  shown i n  Figure 7. This  r e a c t i o n  proceeded 

a t  a rate of 1 .7  ml/gr/min. 

r e l a t i v e  humidlty i s  shown i n  F i g u r e  8. 

e v o l u t i o n  ra te  was 3.2 ml/gr/min. 

and contained 53.8;; Ca(02)*. 

A t y p i c a l  run a t  34OC and 100s 

I n  this case the  oxygen 

The sample weight was 0.11 gram 

The c h a r a c t e r i s t i c s  of the r e a c t i o n  of water vapor and Ca(02)2 

d i f f e r  cons iderably  from the water  vapor - a l k a l i  metal superoxide 

r e a c t i o n .  The product  ob ta ined  by r e a c t i n g  Ca(02)* w i t h  water 

vapor  i s  a white, powdery, dry-looking s o l i d .  I n  c o n t r a s t ,  the  

r e a c t i o n  of KO2 and Na02 w i t h  water vapor, under  the same con- 

d i t i o n s ,  r e s u l t s  i n  a very concentrated hydroxide s o l u t i o n .  This  

r e s u l t  i s ,  of  course,  t o  be expected from the high heat of f u s i o n  

of C a ( O H ) 2  and, i n  f a c t ,  demonstrates one of the major  advantages 

a s s o c i a t e d  wi th  the  p o t e n t i a l  use of Ca(02)2 i n  c a n i s t e r - t y p e  

systems. 

On the o t h e r  hand, t h e  t o t a l  amount of oxygen evolved d i d  no t  

correspond t o  the s to i ch iomet ry  of t he  l i q u i d u s  water r e a c t i o n .  

I n  a d d i t i o n ,  t he  d r y ,  white, powdery product showed inc reased  

peroxide con ten t  ove r  the s t a r t i n g  material. Fo r  example, i n  one 

case the  a n a l y s i s  of the sample be fo re  r e a c t i o n  w i t h  water vapor 

showed a superoxide con ten t  o f  about 52 .8s  and a peroxide  

c o n t e n t  UI 2.6$.  After  r e a c t i o n  t h e  superoxide con ten t  was ze ro  

and the t o t a l  peroxide con ten t  was 705. Other data i s  summarized 
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i n  Table  IS. It appears t ha t  the r e a c t i o n  of calcium superoxide 

w i t h  water vapor  must proceed by one of the fo l lowing  Qaths: 

Ca(02)* + 2H20(v) = Ca(OH)2 + H202  + O2 ( 9 )  
o r  

Ca(0 2 2  ) + nH20(v) = Ca02.nH20 + O2 (10) 

According t o  t h e  s to ich iometry  of & a c t i o n  (g), 

hydrogen peroxide would be formed. The format ion  of such a 

product  would be d i f f i c u l t  t o  j u s t i f y  because of the dryness  of the 

r e a c t i o n  product .  xn a d d i t i o n ,  when the sample was washed w i t h  

demineral ized water and the  f i l t r a t e  t es ted  f o r  peroxide con ten t  

w i t h  permanganate s o l u t i o n ,  t h e  peroxide t e s t  was nega t ive .  Had 

l i q u i d u s  hydrogen peroxide been formed, i t  would have been found 

a t  t h i s  p o i n t  and the  peroxide t e s t  would have been p o s i t i v e .  

Also,  when samples con ta in ing  5O$ calcium superoxide were con- 

t a c t e d  w i t h  demineral ized water, gas  was evolved, and a white 

p r e c i p i t a t e  formed, e i t h e r  C a ( O H ) 2  o r  Ca02. The p r e c i p i t a t e  was 

f i l t e r e d  o f f  and d i l u t e  permanganate s o l u t i o n  added  dropwise t o  

t he  f i l t r a t e .  The permanganate s o l u t i o n  was no t  decolor ized ,  

which i n d i c a t e s  t he  l a c k  of formation of hydrogen peroxide.  

The evidence presented  a tove  and i n  Table I1 t ends  t o  f a v o r  

r e a c t i o n  (10) as t h e  b e t t e r  d e s c r i p t i o n  of  the  r e a c t i o n  between 

calcium superoxide and water vapor. Mole r a t i o s  of oxygen evolved 

t o  c a l c i u n  superoxide i n  t h e  s t a r t i n g  material va r i ed  between i and 

2 f o r  the  s tudy  a t  24'C, b u t  never l ess  than  1. A t  34OC,  the  mole 

I r a t i o  was approximately one. Excess  e v o l u t i o n  of oxygen can be 
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TABLE 11 

I 

SUMMARY OF DATA FROM KINFTIC STUDIES OF THE 
RIEACTION OF CALC&UM SUPEROXIDE AND WATER VAPOR AT 24OC 

AND 34 C AND 100% RELATIVE HUMIDITY 

Weight 
Saaple (Warns). 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

0.5386 

0.7034 

0 e 2585 

0 3731 

0.2205 

0.5613 

0.3046 

0.3058 

0.2703 

0.2313 

0.1657 

0.6287 

0 3435 

0.5163 

0.6680 

0.11 

T s m g q -  
ture ( C) 

24 

24 

24 

24 

24 

24 

24 

24 

24 

24 

24 

34 

34 

34 

34 

34 

43.6 

43.6 

58.2 

50.1 

52.6 

52.6 

49.5 

43.0 

70.8 

41.3 

55.0 

29.0 

29.0 

29.0 

34.8 

53.8 

15.0 

15.0 

5.2 

11.4 

8.4 

8.4 

12.0 

10.9 

0.0 

11.6 

3-0 

24.4 

24.4 

24.4 

24.6 
---- 

31.1 

37.9 

35.3 

18.2 

29.0 

34.0 

33.0 

44.3 

31.4 
---- 
34.8 

38.8 

33.1 

34.2 

33.6 
---- 

1.11 

1.11 

1.68 
---- 
1.46 

1.26 

1.17 

1.51 

1.86 

1.09 

1 .og 

0.96 

1.00 

0.94 

0.97 

0.79 



a t t r i b u t e d  t o  par t ia l  decomposition of calcium peroxide  by water 

vapor.  3 9  9 

2.3  

The 

REACTIOXS OF A I R  REVITALIZATION MATERIALS WITH CAREON DIOXIDE 
Ah? WATER VAPOR 

importance of a i r  r e v i t a l i z a t i o n  materials, such as superoxides ,  

depends upon t h e  r e a c t i o n s  of t h e s e  compounds with carbon d ioxide .  

A s  r ,oted p r e ~ i o u s l y , ~  ex tens ive  i n v e s t i g a t i o n s  have been made t o  

s tudy  the  r e a c t i o n  of carbon dioxide wi th  a l k a l i  metal hydroxides,  

oxlcies, peroxides ,  superoxides ,  and ozonides .  I n  a l l  cases ,  water 

vapor p l a y s  a v i t a l  r o l e  i n  t h e  r e a c t i o n  ra te .  7’ 

role of water i n  the  r e a c t i o n  mechanism has n o t  y e t  been c l e a r l y  

e s t a b l i s h e d .  

The e x a c t  

IR the  case of Superoxides,  t h e  o v e r a l l  r e a c t i o n s  are w r i t t e n  as: 

2MOH + C 0 2  = M CO + H 2 0  
2 3  

o r  

3 2M011 + C 0 2  = 2MHCO 

where M r e p r e s e n t s  a n  a l k a l i  metal .  I n  t h e  case  of ozonides,  the  

r e a c t i o n s  are the  same, namely, t h e  format ion  of t h e  hydroxide 

which absorbs  the carbon dioxide;  o n l y  t h e  s to i ch iomet ry  v a r i e s .  

K i n e t i c s  of the  r e a c t i o n  of potassium ozonide w i t h  carbon d iox ide  

a t  v a r i o u s  c o n d i t i o n s  of r e l a t i v e  humidity have been r epor t ed .  7 

The cus tom-bui l t  appa ra tus  designed f o r  k i n e t i c  s t u d i e s  of the  

r e a c t i o n  of a i r  r e v i t a l i z a t i o n  compounds w i t h  carbon d ioxide  and 

water vapor i s  shown i n  Figure 9 .  The a n t i c i p a t e d  proeedure c a l l e d  
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f o r  t he  evacuat ion of t h e  glassware between s topcocks A and D, 

excluding t h e  f lask conta in ing  the aqueous s u l f u r i c  a c i d  s o l u t i o n  

f o r  humid i ty  c o n t r o l .  During t h i s  t i m e ,  c a l i b r a t i n g  gases  w e r e  

passed through t h e  instruments  at a f low rate t o  be used dur ing  the  

a c t u a l  run (0.5 SCFH). The c a l i b r a t i n g  gases were d r y  N2 and 5% C02 

and 5s O2 i n  N2. The sample was loaded i n t o  a U-tube i n  a d r y  box, 

i n s e r t e d  i n  the system, and a l s o  evacuated.  Dewars w e r e  p laced 

around the sample tube and the  humidity c o n t r o l  s o l u t i o n  t o  main- 

t a i n  a cons t an t  temperature  throughout the  experiment .  When the 

system was evacuated t o  about 0.1 mm, t h e  r e a c t i o n  gas mixture  

(5s C02 i n  N2) was l e t  In t o  a p o s i t i v e  p re s su re  ( l a t e r  t o  occupy 

t h e  void of the sample t u b e ) .  

introduced i n t o  the system and the gas  c i r c u l a t e d  through the 

ins t ruments  (Beckman I n f r a r e d  C02 Analyzer and Paramagnetic Oxygen 

The humidity c o n t r o l  s o l u t i o n  was 

Analyzer) .  

the gas was expanded i n t o  the  sample tube by r ap id ly  t u r n i n g  

When concen t r a t ion  equi l ibr ium had been established, 

s topcocks B and C .  The oxygen and carbon d ioxide  concen t r a t ions  

w e r e  monitored w i t h  t i m e .  An immediate  small decrease i n  both  

concen t r a t ions  was expected due t o  t he  expansion of t h e  c i r c u l a t i n g  

gas i n t o  the  evacuated sample tube .  

c e n t r a t i o n  fol lowed by a decrease i n  t h e  C02 concent ra t ion  w a s  t hen  

expected as r e a c t i o n s  (11) and (12) o r  (13) take p lace .  However, 

i n  these pre l iminary  s t u d i e s ,  a d r a s t i c  decrease  i n  the C02 

c o n c e n t r a t i o n  from about  5s t o  1s i n  t h e  first minute of r e a c t i o n  

t i m e  fol lowed by an  inc rease  t o  about  4% i n  t h e  next  minute was 

ohserved.  The oxygen concent ra t ion  behaved oppos i t e ly ;  a sharp 

An inc rease  i n  t h e  O2 con- 
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i nc rease  followed by a sharp reduct ion .  The concen t r a t ions  t h e n  

behaved as expected; the  oxygen concent ra t ion  rose s lowly and the 

carbon d ioxide  concent ra t ion  t r a i l e d  o f f .  The i n i t i a l  phenomena 

were a t t r i b u t e d  t o  the f a c t  t ha t  the instruments  d i d  no t  see a 

r e p r e s e n t a t i v e  sample of t h e  e n t i r e  gaseous system but  only t h a t  

p o r t i o n  which has j u s t  been i n  contac t  w i t h  t he  sample. t 

, To e s t a b l i s h  a true base l ine ,  t o  e l imina te  the change i n  con- 

c e n t r a t i o n  due t o  t h e  change i n  pressure ,  and t o  overcome the 

i n i t i a l  phenomena descr ibed above, the  fol lowing steps were taken.  

A ballast  f lask was i n s e r t e d  i n t o  the l i n e  between t h e  sample tube 

and the ins t ruments  t o  a l low the gases t o  mix p r i o r  t o  measurement 

of the concen t r a t ions  of O2 and C02. The sample tube was charged 

under  N2 i n  a dry box. 

bu t  i s o l a t e d  along wi th  t h e  s u l f u r i c  a c i d  s o l u t i o n  while the g l a s s -  

The sample tube  was placed i n t o  the system 

ware between s topcocks A and D was evacuated. After the i n s t r u -  

ments had been c a l i b r a t e d  and the vacuum reduced t o  about 0 .1  mm, 

the MacLeod gauge and the vacuum pump were i s o l a t e d .  The r e a c t i o n  

gas mixture  (5% C02 i n  N2) was l e t  i n  t o  atmospheric p re s su re  and 

c i r c u l a t e d  through the instruments .  It has been shown7 t h a t  

potassium ozonide and superoxide do no t  r e a c t  w i th  d r y  C02. 

f o r e ,  the sample tube,  under  N2 was i n s e r t e d  i n  the c i r c u l a t i n g  l i n e .  

There- 

The r e a c t i o n  gas mixture  was c i r c u l a t e d  u n t i l  concen t r a t ion  

equ i l ib r ium has been e s t ab l i shed ,  then  allowed t o  pass through the 

humidity c o n t r o l  s o l u t i o n  of s u l f u r i c  a c i d .  T h i s  time was taken 

as ze ro  time" f o r  t he  k i n e t i c  s tudy.  I1  The O2 and C 0 2  concent ra t ions  

I were monitored w i t h  t i m e .  



The percentage y i e l d s  l i s t e d  i n  Table I11 are f o r  t he  fo l lowing  

s t o i c h i o m e t r i c  r eac t ion :  

2Na02 + 3/2C02 + 1/2H20 = 1/2 N a  CO + NaHCO + 3/202 2 3  3 

2.3.1 Sodium Superoxide - Carbon Dioxide React ion 

The r e a c t i o n s  between sodium superoxide , carbon dioxide, and water 

vapor have been s k u d i e d  a t  room temperature and a t  47.7$, 71.4$, 

and loo(% r e l a t i v e  humidity.  Data f o r  t y p i c a l  runs a r e  summarized 

i n  Tables 111 and I V  and i l l u s t r a t e d  i n  F igures  10, 11, and 12. 

The superimposi t ion of these th ree  f i g u r e s  emphasizes expected 

t r e n d s  which are v e r i f i e d  by the  data given i n  Table 111. For 

example, as the amount of water i n  the vapor phase is  increased ,  

f o r  nea r ly  equal weight samples, the oxygen released v i a  r e a c t i o n  

(11) 

t i m e  i s  needed f o r  complete absorp t ion  of t h e  carbon dioxide a t  

each l e v e l  of x e l a t i v e  humidity,  t h e  abso rp t ion  process  takes 

p lace  a t  a f a s t e r  r a t e  a t  t h e  higher humidi t ies .  

when the water  vapor-carbon dioxide mixture  was c i r c u l a t e d  ove r  

equal  weight samples of sodium superoxide a t  an average rate of 

0 .5  SCFH, t h e  abso rp t ion  of carbon dioxide was complete i n  about  

360 minutes  i n  a l l  cases ,  whereas the  oxygen evo lu t ion  process  was 

complete a f t e r  210, 165, and 150 minutes a t  t h e  47.7$, 71.4$, and 

1005 l e v e l s  of r e l a t i v e  humidity, r e s p e c t i v e l y .  The f i r s t - o r d e r  

k i n e t i c  rate cons t an t s  f o r  t he  evo lu t ion  of oxygen and abso rp t ion  

of carbon d ioxide  f o r  t hese  r e l a t i v e  humidity l e v e l s  are a l s o  noted 

i n  Table  111. 

- 
i s  evolved i n  a s h o r t e r  time. Although e s s e n t i a l l y  the same 

For  example, 
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TABLE IV 

Summary of Data f r o m  Sodium Superoxide - Carbon Dioxide Studies 

Relative Sample Average 
Run Humid 1 ty Weight Re 8 p i  ra t o ry - NO - 00 Quotient Final 

1 47.7 0.5689 1.2 1.5 

2 47.7 0.5471 1.1 1 . 3  

3 47.7 0.6410 1.0 1 . 3  

4 47.7 0.5611 1.0 1.2 

5 71.4 0.5185 1.1 1.2 

6 71.4 0.4884 1.1 1 . 3  

7 71.4 0.4568 1.1 1 . 3  

8 71.4 0 e 4108 1.2 1.2 

9 71.4 0.4308 1.0 1.1 

10 100 0.5308 1.2 1.3 
11 100 0.4886 1.3 1.4 

12 100 0.4947 1.1 1.2 

13 100 0.4694 1.1 1.3 
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. 

Such a r e a c t i o n  i s  necessary because of  the observed r e s p i r a t o r y  

q u o t i e n t s  ( R . Q . )  and t h e  . f i n a l  observed volumes Of C 0 2 ,  bo th  of 

which cannot be expla ined  on the  basis of equa t ions  (ll), ( 1 2 ) ,  

and (13).  

a t t r i b u t e d  t o  c;-usting of t he  sur face  du r ing  r e a c t i o n  w i t h  water 

vapor.  A lesser degree of  c r u s t i n g  was observed a t  t h e  h i g h e r  

humid i t i e s  as evidenced by t h e  higher y i e l d s .  Upon completion o f  

the  runs,  t h e  p roduc t s  were brought i n t o  c o n t a c t  w i t h  l i q u i d u s  

water. Slow gaseous e v o l u t i o n  was observed and the  c r u s t e d  product  

d i d  n o t  d i s s o l v e  r e a d i l y .  

The low y i e l d s  of oxygen l i s t e d  i n  Table I11 can be 

The observed r e s p i r a t o r y  q u o t i e n t  va lues  f o r  t h i s  series of 

experiments  va r i ed  f r o m  t h e  0.67 va lue  p r e d i c t e d  by r e a c t i o n s  (11) 

and (12) and a l s o  from the  1.30 va lue  p r e d i c t e d  by r e a c t i o n s  (11) 

and (13). The average and f i n a l  R.Q.  va lues  observed a t  t h e  

v a r i o u s  r e l a t i v e  humidity l e v e l s  are summarized i n  Table  I V  and 

p l o t t e d  as a f u n c t i o n  of tin,e for t y p i c a l  c a s e s  i n  F igu res  13, 

14 ,  and 15. React ion (14)  best d e s c r i b e s  t h e  s t a t e  wheredin the 

R.Q. would be n e a r  1.0, However, the  StOiChiOnetFj appa ren t ly  

f a v o r s  b i ca rbona te  format ion  as  evidenced by the  h i g h e r  f i n a l  R.Q. 

v a l u e s .  These r e s u l t s  a l s o  serve to confirm and e x p l a i n  r e c e n t  

l i f e  suppor t  s t u d i e s  by the l3oeing Company i n  which it was found 

tha t  l e s s  a u x i l i a r y  carbon dioxide scruiiber material was requ i r ed  

f o r  a sodium superoxide system than  expected on the basis of 

r e a c t i o n s  (11) and ( 1 2 ) .  Thus, t h e  product  of t he  sodium super-  

ox ide  - carbon d ioxide  - water vapor r e a c t l o n  i s  p o s t u l a t e d  t o  be 

a mixture  con ta in ing  b icarbonate  as  w e l l  as carbonate .  
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According t o  r e a c t i o n  (14), t h e  r e s p i r a t o r y  q u o t i e n t  expected from 

the p rev ious ly  r epor t ed  d a t a  would be 1 .0 .  Table IV shows tha t  a n  

R.Q. n e a r  1 .0  was observed, b u t  i n  some c a s e s  t he  R.Q. was greater. 

I n  a l l  cases ,  t he  R.Q. increased  toward t h e  end of t h e  run as 

carbon d ioxide  continued t o  be absorbed a f t e r  the c e s s a t i o n  of 

oxygen evo lu t ion .  T h i s  l a g  i n  carbon d ioxide  a b s o r p t i o n  vs  oxygen - 
e v o l u t i o n  i s  expected s i n c e  i t  is known t h a t  carbon d ioxide  does 

no t  r e a c t  with d r y  superoxide o r  h jdroxide .  Therefore ,  t h e  i n i t i a l  

r e a c t i o n  must be w i t h  water  vapar, acco rd inz ly  : 

2Na02 + I120(v) = 2IJaOfl + 3/202 (15) 

Simultaneously,  the  c a u s t i c  is wetted and i o n i z e d ,  
+ NaOH + H~O(V) = Na OH- .1120 

A t  pll va lues  grea te r  than  10, d i r e c t  r e a c t i o n  of carbon d ioxide  

w i t h  hydroxide predominates : 
12 

- 
C02 f OH- = HCO3 

FIowever, t h e  fo l lowing  r e a c t i o n  between t h e  b icarbonate  formed 

and t h e  neighboring hydroxide occurs  in s t an taneous ly :  

- - 
H C O ~  + OH- = C O ~  + 11~0 

Therefore ,  e a r l y  i n  the  experiment, the R.Q. i s  governed by 

carbonate  format ion  w i t h  va lues  l e s s  than  1 .0 .  

If carbonic  a c i d  (H CO ) is i n  the gas stream as a r e s u l t  of 2 3  

the  carbon d ioxide  bubbl ing through d i l u t e  a c i d  s o l u t i o n s ,  i t  

w i l l  be n e u t r a l i z e d  t o  the bicarbonate:  
- 

H2C03 + OH- = H2O + HCO3 (19 )  

which w i l l  t hen  react in s t an taneous ly  accord ing  t o  r e a c t i o n  (18). 
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. 

With time, r e a c t i o n s  (15) through (18) proceed, the superoxide 

con ten t  d iminishes ,  and the rate o f  oxygen e v o l u t i o n  dec reases .  

The rate of carbon d ioxide  abso rp t ion  a l s o  dec reases  as the 

a v a i l a b i l i t y  of c a u s t i c  dec reases  and t h e  product  becomes c r u s t e d .  

The b i ca rbona te  formed i n  r e a c t i o n  (17) sees less and l e s s  

hydroxide t o  r e a c t  w i t h ,  t h e  e x t e n t  of r e a c t i o n  (18) decreases ,  
1 

I t he  R.Q. f a v o r s  b icarbonate  formation and i n c r e a s e s  toward 1.33. 

Values greater t h a n  1.33 are probably  due t o  the  i n e f f i c i e n t  

e v o l u t i o n  of oxygen (ca. - 75$ i n  the  case of  t h e  n.45 re la t ive  

humidity r u n s ) ,  1 .e .  underproduct ion of oxygen wi th  r e s p e c t  t o  

t h e  e f f i c i e n t  b icarbonate  formation.  

2.3.2 Calcium Superoxide - Carbon Dioxide React ion 

The r e a c t i o n  of calcium superoxide wi th  carbon d ioxide  and water 

vapor  has  a l s o  been s tud ied  a t  room temperature  and va r ious  l e v e l s  

of  r e l a t i v e  humidity.  Typica l  r e s u l t s  are i l l u s t r a t e d  i n  F igu res  

16 and 17 and summarized i n  Table ‘J. 

A s  w a s  t h e  case  i n  t h e  k i n e t i c  s t u d i e s  of the corresponding water 

r e a c t i o n ,  these s t u d i e s  are complicated by t h e  complex composition 

of t he  s t a r t i n g ,  material and the  dubious s t o i c h i o m e t r i e s  of t h e  

superoxide  r e a c t i o n s .  The data  i n  T a b l e  V are va r i ed  enough so  as 

n o t  t o  enable  a c l e a r  c u t  choice of s t o i c h i o m e t r i e s .  A t  the  higher  

l e v e l s  of r e l a t i v e  humidity,  the R.Q. remains between 0.75 and 1.1 

I d u r i n g  most of  the experiment b u t  rises t o  1 .3  and g r e a t e r  as 
I 
I 
I 

carbon d ioxide  cont inues  t o  be absorbed  even a f t e r  the  e v o l u t i o n  

o f  oxygen is  complete. The observa t ions  are confirmed i n  F igu res  16 
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TABLE V 

SUMMARY OF DATA FROM CALCIUM SUPEROXIDE - CARBON DIOXIDE 
STUDIES AT ROOM TEMPERATURE 

R e  1 a t  ive 
Sample Humidity Weight 

1 47.7 0.4515 

2 47.7 0 5195 

3 47.7 0.5060 

4 47.7 0.4420 

5 71.4 0 3700 
6 71.4 0.5728 
7 71.4 0.4691 
a 71.4 0.4588 

9 100 0.5258 
10 100 0.4874 

Respiratory Quotient Final Molar Ratio 
Average -2 Fina  O2 /CaO4 C02/Ca04 

0.71 0.75 1.19 0.87 
1.26 2.4 0.84 1.64 

0.86 1 . 3  0.92 0.80 

1.38 1.6 0.79 0.95 

0.75 1.33 1.26 1.7 

1.10 1 . 3  1.19 1.8 
1.14 1.4 0.82 1.19 

0.8 1.28 1.15 1.32 

0.94 1.6 1.78 2.87 

1.04 1.8 1.86 3.0 



and 17 which show t h a t  t he re  i s  a cons iderable  l a g  i n  carbon 

dioxide a b s o r p t i o n  wi th  respect t o  oxygen e v o l u t i o n .  I n  a d d i t i o n ,  

t h e  experimental  molar r a t i o s  o f  oxygen evolved and carbon d ioxide  

absorbed t o  s t a r t i n g  material, calcium superoxide,  are no t  con- 

s i s t e n t .  Some agreement w i t h  the water r e a c t i o n  data d iscussed  

above i s  obta ined  wi th  respect t o  the 02/Ca04 molar  r a t i o  which 

l i e s  appa ren t ly  n e a r  1 i n  most ca ses .  React ions ( 9 )  and (10) would 

then  apply  as t h e  i n i t i a l  s t e p  f o r  these s t u d i e s .  On t h e  o t h e r  

hand, the CO /CaO molar r a t i o s  ranging from about  1 t o  3 are 
2 4 

observed which do no t  correspond wi th  the va lues  expected from the 

p o s t u l a t e d  s t o i c h i o m e t r i e s  of r e a c t i o n s  ( 9 )  and (10) .  

Ev iden t ly ,  these data do not  t r u l y  d e p i c t  the  p rocesses  involved 

i n  t he  r e a c t i o n s  of -water vapor  and carbon d ioxide  w i t h  calcium 

superoxide .  I n  the above d i scuss ion ,  the r o l e s  of calcium peroxide 

and/or hydroxide,  major c o n s t i t u e n t s  i n  t h e  i n i t i a l  sample, were 

not  taken  i n t o  account .  It is evident  tha t  the  hydroxide w i l l  be 

wetted and absorb carbon d ioxide .  I n  prev ious  d i s c u s s i o n s ,  i t  was 

po in ted  ou t  t h a t  calcium peroxide w i l l  r e a c t  w i t h  water vapor  t o  

evolve oxygen and the product  capable of  absorb ing  carbon d ioxide .  

These s i d e  r e a c t i o n s  can t h u s  lead t o  a n  R.Q.  va lue  or a CO /CaO 

mole r a t i o  greater  than  expected i n  terms of  only  calcium superoxide.  

4 2 

It i s  probable ,  t h e r e f o r e ,  that the fo l lowing  r e a c t i o n s  occur:  

Ca(02)2 + nH20 = C a O  2 2  .nH 0 + O2 (29) 
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I .  

followed by: 

C a O  .n:i 3 + x s x  0 = C ~ ( O I I )  + 1/20 
2 2  2 2 2 

and 

c ~ ( o E ) ~  + CO* = CaCo3 + H ~ O  

It i s  p o s s i b l e  tha t  the carbon dioxide reacts d i r e c t l y  w i t : ;  t’-e 

peroxide complex, 

2 Ca(02) .nH20 + CO = C a C O  i nII 0 + 1/20 
2 3 2 

These r e a c t i o n s  would y i e l d  a n  R.Q. value  of  0.67. React ions 

between the  i n i t i a l  hydroxide and/or peroxide and the water vapor - 
carbon d ioxide  system cculd lead t o  hizher observed R.Q. values .  

2.4 

The r e a c t i o n  o f  a i r  r e v i t a l i z a t i o n  chemicals w i t h  carbon monoxide 

i s  o f  i n t e r e s t  because Bogatkov, e t .  a1.l: have confirmed t h e  

presence  of carbon monoxide i n  the atmosphere of confified chambers 

i n h a b i t e d  by groups of smokers and non-smokers. After  approximately 

REACTION OF SODIUM SUPEROXIDE WITH C A R 3 O N  NONOXIDE 

- -  

t e n  d a y s ,  the a i r  of a tes t  chamber inhab i t ed  by three  persons 

conta ined  0.023 - 0.27 m g / l  (23  - 27 ppm) of carbon monoxide. 

T s e n t s i p e r  and Tokareva14 have r epor t ed  that  sodium superoxide 

r e a c t s  w i t h  d r y  carbon monoxide only above 100 C t o  form t h e  

ca rbona te  : 

0 

2Na02 + CO = Na2C0,  + Q2 

accompanied by the r eac t ion :  

2Na02 = Na202 + O2 



The 3uss i an  invest1;ators also r epor t  t h a t  potassium superoxide 

r e a c t s  with d r y  carbor. monoxicit. ts T o m  tlre carbonate  a t  only 9 5 O C  

( 1 4 ) .  I n  t h e  presence of water vapor,  the format ion  of sodium and 

potassium carbonate  supposedly occurs  a t  9 5 O C  and 7OoC, r e s p e c t i v e l y .  

The appa ra tus  and procedure descr ibed  above f o r  t he  carbon d ioxide  

s t u d i e s  was used t o  i n v e s t i g a t e  t h e  r e a c t i o n  of  sodium superoxide 

w i t h  carbon monoxide. Carbon monoxide a t  900 ppm i n  n i t r o g e n  was 

used as t h e  sample gas. The Beckman C02 I n f r a r e d  Analyzer was 

adapted t o  monitor  carbon monoxide. T h i s  meter r e g i s t e r e d  a blank 

a b s o r p t i o n  of 3 ppm/hr a t  room t empera ture ,  1 0 0 ° C  and 120OC. 

these temperatures ,  blank responses  for the oxygen meter w e r e  

0.12$/hr. 

At 

A b l ank  de termina t ion  was a l s o  made a t  100°C and 1 2 O o C  by c i r c u -  

l a t i n g  d ry  n i t r o g e n  gas o v e r  the sodium superoxide sample. The 

b l ank  r ead ings  d i d  no t  vary from those  determined wi thout  a super-  

ox ide  sample, t h u s  i n d i c a t i n g  no s i s n i f i c a n t  thermal decomposition 

of the sample. 

When carbon monoxide was introduced i n t o  the system a t  these 

tempera tures  and a t  O$ r e l a t i v e  humidity,  a change i n  t h e  carbon 

monoxide concen t r a t ion  beyond tha t  expected from the  blank 

de te rmina t ions  was observed.  Thus, a r e a c t i o n  between the  super- 

ox ide  and carbon monoxide i s  i n d i c a t e d .  These r e s u l t s  are 

i l l u s t r a t e d  i n  F igure  18. Assuming t h e  Xussian s to ich iometry  of 

r e a c t i o n  (24)  as the  expected equ i l ib r ium,  t h e n  a t o t a l  e v o l u t i o n  

of oxygen i n t o  the system of about  0.26 oxygen would be a n t i c i p a t e d .  
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!lowever, t h i s  change would be smaller than  the t o t a l  amount expected 

from t h e  b lank  and t h i s  could not  be de tec t ed  with the p r e s e n t  

appa ra tus .  Thus, the  Russian s to ich iometry  cannot  be v e r i f i e d  a t  

t h i s  time. 

The abso rp t ion  of carbon monoxide was not  observed when these 

experiments  were repea ted  a t  100,; re lat ive humidity.  These r e s u l t s  

c o n t r a d i c t  tl!e iiussiar! 01 s e r v a t i o n s  whic’c i n d i c a t e d  a lowering of  

t h e  ninimum r e a c t i o n  teniperatilre wi th  inc reased  re la t ive  hulridity . 14 

At TGOL: t e z p e r a t u r e  and a t  0 3r 100,: re la t iye  humidity, r e a c t i o n  of 

t h e  superoxide w i t h  carbon monoxide was n o t  observed. 

On t h e  basis of t h e s e  s t u d i e s  i t  must be concluded that superoxides  

cannot  be considered e f f e c t i v e  CO sc rubbers  a t  normal ope ra t ing  

tempera tures .  

2.5 IIAGNETIC SUSCEPTIBILITY STUDIES 

Iblapet ic  s u s c e p t i b i l i t y  s t u d i e s  of var ious  a i r  r e v i t a l i z a t i o n  

materials, i n  p a r t i c u l a r ,  calcium superoxide , were conducted i n  an  

e f f o r t  t o  f u r t h e r  c h a r a c t e r i z e  t h e i r  s t r u c t u r e  and phys ica l  

p r o p e r t i e s  arid t o  serve as a n  independent a n a l y t i c a l  check of t h e i r  

p u r i t y .  

2.5.1 The Guoy Method 

The Guoy method i s  generally used f o r  the de te rmina t ion  of 

m a p e t i c  s u s c e p t i b i l i t i e s .  T h i s  method i s  based on the  proper ty  

of paramagnetic subs t ances  t o  a l i s n  themselves p a r a l l e l  t o  a 

homozeneous :!ias;netic f i e l d  and t h u s  b e  drawn i n t c  the f i e l d .  When 

a ttj.:le c o n t a i n i n z  the sanigle i s  suspenclecl i n  a r a g n c t i c  f i e l d  i n  
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such a manner that  the  lower end of t h e  tube  i s  i n  a uniform f i e l d  

and the  upper end i n  a inhomogeneous f i e l d ,  t h e  downward magnetic 

f o r c e  a c t i n s  on the sample can be measured w i t h  a n  a n a l y t i c a l  

ba lance .  A diamagnetic substance a l i g n s  i t s e l f  pe rpend icu la r  t o  

a homogeneous f i e l d  and I s  r epe l l ed  from an  inhomogeneous f i e l d .  

Under  these cond i t ions ,  a paramagnetic material develops a magnetic 

moment which is 

where K i s  the s u s c e p t i b i l i t y  p e r  u n i t  of volume, '1 is  t h e  

volume of t5e sample, and H i s  t h e  f i e l d  s t r e n g t h .  S ince  the  

f i e l d  g rad ien t  f o r  a non-uniform f i e l d  may be expressed as AH/bZ, 

t h e n  t h e  sample w i l l  experience a l i n e a r  d i s p l a c i n d  f o r c e ,  P, 

i n  the  Z d i r e c t i o n  of 

o r  

where A i s  the c r o s s - s e c t i o n a l  area of  the sample. It fo l lows  

that: 

g Am = 1/2 KAH2 (23) 

where Am i s  the change i n  weight measured on the  a n a l y t i c a l  

ba l ance .  

Rearranging, 
2g Am K =  
AH* 

I n  p r a c t i c e  t he  mass or gram s u s c e p t i b i l i t y z  i s  g e n e r a l l y  a more 
0' 
v 

u s e f u l  q u a n t i t y  than  i s  the volume s u s c e p t i b i l i t y  K, and s i n c e ,  
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where d is  the sample d e n s l t y ,  i t  follows t ha t  

“=v& m 

Since AL = V, where L is t h e  length  of sample, then 

2g AmL 
2 x , =  

mH 
( 3 3 )  

where m is  the  mass of sample. Equation (33) i s  the express ion  

used i n  the p r e s e n t  work t o  determine t h e  g r a m  s u s c e p t i b i l i t i e s  

of the test samples. 

Mass s u s c e p t i b i l i t i e s  determined i n  t h i s  manner are, i n  r e a l i t y ,  

sums of the paramagnetic and diamagnetic s u s c e p t i b i l i t i e s .  

Diamagnetism is a u n i v e r s a l  property of matter and even a para- 

magnetic substance has a n  underlyang diamagnetism. General ly  

speaking, i f  the t e s t  sample i s  very pure,  c o r r e c t i o n s  may be 

neglec ted  w i t h  minor e r r o r  because of the r e l a t i v e l y  small 

diamagnet ic  c o n t r i b u t i o n s .  

2.5.2 T h e o r e t i c a l  Moments 

It is also poss ib l e ,  i f  a n  accura te  chemical a n a l y s i s  of t h e  sample 

is known, t o  o b t a i n  information r e l a t i n g  t o  the  number of unpaired 

e l e c t r o n s  i n  the  material, and i n  t h i s  way d e r i v e  u s e f u l  s t r u c -  

t u r a l  in format ion  p e r t a i n i n g  t o  t h e  material of i n t e r e s t .  

S ince  an e l e c t r o n  is a charged p a r t i c l e ,  it has a magnetic f i e l d  

a s s o c i a t e d  w i t h  i t s  motion. Thus, t he  e x i s t e n c e  of unpaired 

e l e c t r o n s  i n  an  atom o r  molecule g ives  rise t o  a permanent 

magnet ic  moment, , f o r  the  atom o r  molecule.  T h i s  magnetic 
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norxent r e s u l t s  from t h e  combined c o n t r i b u t i o n s  of the i -aul tant  

s p l c  ai2;;clar momentL;s (S)  and the r e s u l t a n t  orbital angu la r  

nomentuc; (L)  of the unpaired e l e c t r o n s .  The e f f e c t s  cance l  f o r  

a l l  pai1-d e l e c t r o n s ,  which, t he re fo re ,  make no c o n t r i b u t i o n s  

t o  the magnetic moment of t he  system. 

From wave mechanical cons idera t ions  the  permanent magnetic moment 

of a system conta in ing  unpaired e l e c t r o n s  i s  related t o  S and L 

accord ingly  : 

1.113 = 44S(S+l) 4- L ( M 1 )  (34) 

‘where 1.1 i s  expressed i n  Dohr magnetons. Since the  c o n t r i b u t i o n  

due t o  the o r b i t a l  motion of the e l e c t r o n  i s  small compared t o  

the  c o n t r i b u t i o n  made by t h e  sp in  motion, then  equat ion (34) 

reduces t o  

PB = 2 /*) (35) 

Since the number of unpaired e l e c t r o n s ,  n ,  eqvals 2S, t h e  monent 

may le r e l a t e d  d i r e c t l y  t o  the niiml)er of si-~.cL, unpaired e l c c t r o n s  

I-; tl,e expl.essior1: 

pp, = dn(n-;2) 

Thus, tl-le t h e o r e t i c a l  value of pn t o  >e 

w i t h  one unpaired e l e c t r o n  i s  1.73 Bohr 

(3.;) 

expected f o r  a system 

magnetons. T h i s  value 

is  a l s o  t o  be expected of superoxide compounds due t o  t h e  

presence of t h e  one unpaired e l e c t r o n  in the 3-e lec t ron  bond of 

t h e  superoxide ion .  

oxide i o n  is  an  O2 

( I n  1331 Paulin;l7 suggested that t h e  super- 
- 18 spec ie s  having a 3 -e l ec t ron  bond. Newman 



found experimental ly  that potassium superoxide is  paramagnetic.  ) 

For two unpaired e l e c t r o n s ,  u = 2.64 3ohr  maznetons. 13 

2.5.3 Curie Law and Curle-Weiss Law 

Equat ions have been der ived  which express  the r e l a t i o n s h i p s  between 

the  permanent moment and the  m o l a r  s u s c e p t i b i l i t y  o f  a system ( the 

gram s u s c e p t i b i l i t y ,  &, times the molecular  weight).  I n  pa r t i -  

c u l a r ,  there  are two r e l a t i o n s h i p s  used f o r  t h e  de te rmina t ion  of 

the  permanent moments from molar s u s c e p t i b i l i t y  data, the Curie 

Law and Curie-Weiss Law. The mathematical form of t h e  C u r i e  Law 

is: 

wherexMis the molar s u s c e p t i b i l i t y  and T i s  the  abso lu te  

temperature  a t  which the  measurement i s  made. The magnetic 

moment c a l c u l a t e d  by use of the  Curie Law i s  r e f e r r e d  t o  as the 

e f f e c t i v e  magnetic moment; this d i s t i n c t i o n  being necessary 

s i n c e  the Curie L a w  i s  no t  s t r i c t l y  obej-ed i n  a l l  cases .  

I n  o r d e r  t o  e s t a b l i s h  the best p o s s i b l e  value for t h e  maznetic 

moment of material, it is  necessar-y t o  employ the Curic-1JeJ.ss 

Law : 
I------- 

= 2 . Q 4 ~ 2 5  (T-e) 
PE M 

where 0 is  known as the Neiss o r  F i e l d  Constant.  

The Welss cons tan t  arises l a rge ly  froin mutual i n t e r a c t i o n  of 

molecular  d i s p o l e s ,  Qr adjacent  paramagnetic atoms, and large 

i n t e r n a l  f ie lds .  General ly ,  8 i s  q u i t e  small w i t h  r e spec t  t o  T 
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and i n  such cases  the  value of peff obtained by t h e  use of the 

Curie L a w  i s  as rel iable  as experimental  cond i t ions  w i l l  a l low.  

However, i t  cannot be assumed t h a t  8 i s  a lways  n e g l i g i b l e ,  and 

i f  the 0 has not  been determined, t hen  the moment c a l c u l a t e d  by 

the Curie L a w  must be reported as the " e f f e c t i v e "  magnetic moment. 

Large Weiss cons t an t s  gene ra l ly  make t h e i r  appearance i n  magneti- 

ca l ly-concent ra ted  substances,  such as chromium sesquioxide .  The 

Weiss cons t an t  i s  experimental ly  determined by measuring t h e  

s u s c e p t i b i l i t y  of the sample a t  var ious  temperatures .  However, 

t h i s  de te rmina t ion  is  not  always e a s i l y  c a r r i e d  out  because 

al lowances must be made f o r  diamagnetism and temperature-constant  

paramagnetism which are important when 0 i s  ve,ry large. 

From these arguments i t  i s  p o s s i b l e ,  as a f irst  approximation, t o  

c a l c u l a t e  the moment of a material i f  t h e  number of unpaired 

e l e c t r o n s  i s  known as I n  equat ion (34) o r ,  conversely,  the expe r i -  

mentally-determined moment may be used t o  determine the number of 

unpaired e l e c t r o n s  p r e s e n t .  

2.5.4 Experimental  S tud ie s  and Resu l t s  

The magnetic s t u d i e s  conducted during t h i s  research were c a r r i e d  

ou t  accord ing  t o  the Gouy Method. Most of the samples were 

analyzed immediately a f t e r  syn thes i s .  Most of  the measurements 

w e r e  made us ing  an  Atomic Labora tor ies ,  I n c . ,  Model J r e s e a r c h  

aluminum f o i l  e lectromagnet  (&inch,  f l a t ,  pole  focus,  3/4-inch 

gap) and a s o l i d - s t a t e  cu r ren t  r e g u l a t o r  b u i l t  a t  E l e c t r i c  B o a t .  

A few measurements were made using the electromagnet  f a c i l i t y  a t  



the Un ive r s i ty  of Connect lcut  and a permanent magnet a t  E l e c t r i c  

Boat. A diagram of the appara tus  used t o  measure the magnetic 

s u s c e p t i b i l i t y  of s o l i d  samples i s  shown i n  Figure 19. 

Pyrex g l a s s  tubes  of uniform dimensions approximately 13 cm long 

w i t h  a 3 mm bore w e r e  f i l l e d  i n  a P205 d r y  box under a d r y  

n i t rogen  purge t o  a he igh t  of f rom 9 t o  11 cm with the  very 

finely-powdered sample. The sample was tamped down t o  ensure 

homogeneity and compactness. Each tube was f i t t e d  w i t h  a ground 

j o i n t  cap and a glass hook. 

determined by f i l l i n g  w i t h  mercury and weighing. Each tube a l s o  

had an  e x t r a  l e n g t h  of glass rodding joined t o  it a t  the  bottom 

t o  cance l  most of the d iamagnet ic  s u s c e p t i b i l i t y  of t h e  glass 

sample holder .  S u s c e p t i b i l i t y  blanks were a lso run on each tube  

f i l l e d  with dry n i t r o g e n  a t  the amperages a t  which t h e  samples 

were run  t o  determine the c a l i b r a t i o n  weight c o r r e c t i o n s  f o r  each  

tube .  

The volume of each tube was previous ly  

The samples were then  hung from t h e  balance i n  t h e  inhomogeneous 

pa r t  of  the magnetic f i e l d  w i t h  t h e  bottom of the sample column 

a t  t h e  exac t  c e n t e r  of the pole gap. Measurements w e r e  made a t  

v a r i o u s  f i e l d  s t r e n g t h s  and compared with each o t h e r  t o  determine 

the presence of ferromagnet ic  impur i t i e s .  Measured s u s c e p t i b i l i t i e s  

w i l l  vary i n v e r s e l y  wi th  t h e  s t r e n g t h  of t h e  magnetic f i e l d  i f  such 

i m p u r i t i e s  are p r e s e n t .  One of the major disadvantazes  o f  the 

permanent magnet i s  t h a t  the  f i e l d  cannot be v a r i e d ,  and no 

i n d i c a t i o n  of ferromagnet ic  impur i t i e s  can be made. 
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FIG= 19. APPARATUS FOR MEASUKEl#NT OF MAGNETIC SUSCEPTIBILITY 
BY THE GUOY WETHOD. 
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The f i e l d  s t r e n g t h  l i s t e d  by t h e  manufacturer f o r  var ious  amperages 

was v e r i f i e d  by measuring the  s u s c e p t i b i l i t y  of a known s tandard ,  
Mohr's sa l t ,  according t o  the  fol lowing expres s ion  19 . 

where T i s  the abso lu te  temperature.  The r e s u l t s  agreed w i t h  

those va lues  l i s t e d  by Atomic Labora tor ies  f o r  the Model J e l e c t r o -  

magnet w i t h  a pole  gap of 3/4 inches.  

e lectromagnet  could be v a r i e d  cont inuously up t o  about  10,000 

gauss ,  whereas t h e  permanent magnet used i n  t h e  i n i t i a l  s t u d i e s  

was rated a t  4890 gauss .  

i n  subsequent c a l c u l a t i o n s ,  t h e  f i e l d  s t r e n g t h  was determined 

us ing  Mohr's s a l t  p r i o r  t o  the  determinat ion of t h e  s u s c e p t i b i l i t y  

of the unknown sample. Thus, a t  each amperage s e t t i n g ,  two t o  

three de termina t ions  of Am were made f o r  bo th  the sample and the 

s tandard  before the f i e l d  s t r e n g t h  was changed. Exce l l en t  

p r e c i s i o n  was obtained i n  most cases .  

The f i e l d  s t r e n g t h  of t h e  

To insure  accuracy and r e l i a b i l i t y  

Using the procedure and techniques descr ibed above, t h e  magnetic 

s u s c e p t i b i l i t i e s  of potassium superoxide and ozonide and calcium 

superoxide were determined. Average r e s u l t s  are summarized i n  

Table V I .  
r 

For 84.7$ KO2, a gram s u s c e p t i b i l i t y  of 24.10 X 10-o 

c . g . s .  u n i t s  a t  22.OoC was obtained.  

Bohr magnetons and vB = 2.07, using the Weiss cons tan t  of 

E h r l i c h  , 8 = 1 5 O C .  These results are i n  e x c e l l e n t  agreement 

Correspondingly,  peff = 2.02 

20 

21 
with those  repor ted  by Kazarnovskii  and Ehr l ich .  S i m i l a r l y ,  



TABLE VI 

SUMMARY OF SUSCEPTIBILITY DATA AT 25OC 
FOR A I R  REVITALIZATION MATERIALS 

Suscgptibll i ty Magnetic Moment 
x 10 C . R . ~  units (Bohr Magnetons) 

N O S  Effective Permanent - -- Formula arm - Compound 

Potassium Ozonide 13.7 1200 1.69 - K03 

Potassium Superoxide KO2 24.1 1710 2.02 2. OTa 

Calcium Superoxide Ca( 02) 23.64 2460 2.48 2.84' 
b 

20 
a .  calculated using Weiss constant of -15'K. 

b. average of 13 runs, 42-83s Ca(02)2. 

20 
c. calculated using Welss constant of -94OK. 

62 



agreed w e l l  w i t h  those  repor ted  by Kazarnovskii .  

The procedure descr ibed above was a l s o  followed t o  ob ta in  measure- 

ments f o r  samples of calcium superoxide ranging i n  p u r i t y  from 

7s t o  about  70$. 

the sample was analyzed for superoxide conten t ,  according t o  

the method of Seyb and Klimberg . 
are summarized i n  Table V I I .  I n  a t y p i c a l  case ,  the  measured 

gram s u s c e p t i b i l i t y  f o r  a sample conta in ine  calcium superoxide was 

12.71 X 10-o c . g . s .  u n i t s  a t  25OC as c a l c u l a t e d  us ing  equat ion (33). 

To determine the s u s c e p t i b i l i t y  of calcium superoxide,  t he  a n a l y s i s  

of t h e  sample and presence of impur i t i e s  were considered.  The 

c o n t r i b u t i o n  of ca02, CaC03, CaO,  and H20 i m p u r i t i e s  t o  the t o t a l  

s u s c e p t i b i l i t y  of the sample were ignored because of the n e g l i -  

g ible  d i ama~ne t i sm and l a c k  of paramagnetic c h a r a c t e r .  

Immediately fol lowing t h e  magnetic d e f l e c t i o n ,  
I 

I 4 
The data f o r  a number of samples 

r 

2.5.5 Discussion 
- 

It i s  we l l  e s t a b l i s h e d  that  the  superoxide ion,  02 , conta ins  

a 3 -e l ec t ron  bond w i t h  one unpaired e l e c t r o n  . Consequently, 17 

a t h e o r e t i c a l  value of p 

two unpaired e l e c t r o n s  i n  a molecule. However, w i t h  many subs tances ,  

the  t h e o r e t i c a l  va lues  f o r  the permanent moment are no t  always 

a t t a i n e d ,  due l a r g e l y  t o  diamagnetism, l a r g e  i n t e r n a l  f i e l d s ,  and 

i n t e r a c t i o n  between molecular  d i p o l e s ;  a l l  of which f a c t o r s  o f t e n  

r e s u l t  i n  a r e l a t i v e l y  high negat ive value f o r  the Weiss c o n s t a n t .  

The h igh  Weiss cons t an t  f o r  calcium superoxide obtained by E h r l i c h  

= 2.84 Bohr magnetons is  expected f o r  B 

I 
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TABLE V I 1  

Smpl e 
NO 

1 
2 
3 
4 

7 
8 
3 

10 
11 
1 2  
13  
14 
15 

- 

2 

SUMIARY OF MAGNETIC SUSCEPTIBILITY 

SUPEROXIDE SAMPLES 
MEASUREMENTS AT 25OC CALCIUM 

Qram 
Su ecgp t i b i l  I ty 
( * l o  c.g.8. uni t s )  

0.'7649 
0.g 40 
0 . (3240 

o.qG3 

0.7159 
0.7357 

0.8595 

0.7442 

1.0753 

0.52 
0,6702 

0.5863 

0.7011 

0.9662 

0.63 

0.5665 ----- 
0.5303 
0. a595 
0.5540 

----- ----- 

G7,2 

52.8 
46.2 
45.4 
42.2 
37.6 
33.9 
30.8 
29.2 
28.2 
20.8 
1o.G 

6.9 

83.3 
75.0 
53.8 
49.3 
43.5 
43.8 
36.3 
25.3 

4.5 
2.7 

;%:$ 0.0 
3.4 
2:: 

10.0 
11.7 
14.0 
17.6 
16.6 
20.0 

0.0 
21.7 

0.0 
58.0 
68.4 

8.5 
13.3 

2.6 
24.6 
38.6 
21 .B 
25.2 
29.4 

95.5 
97.3 

12.9 

12.7 
12.1  
10.3 
10.4 
12.7 
7.0 
6.5 
5.6 
5.1 
3.0 
3.3 
0.3 
0.4 

24.3 
16.0 
12.6 
10.2 

6.1 
8.0 

0.8 
0.5 

12.5 

8: 5 

2 *Data of P e t r o c e l l i  and Chiarenzel l i  

**Date of Ehrlich 2o 
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(-94OK) seems t o  confirm these observa t ions .  

i n  the r e s u l t s  obtained exper imenta l ly  i n  t h i s  l a b .  F igu re  20 

i l l u s t r a t e s  the v a r i a t i o n  of the measured gram s u s c e p t i b i l i t y  f o r  

samples con ta in ing  calcium superoxide as a f u n c t i o n  of the per- 

centage superoxide.  

e a r l i e r  by P e t r o c e l f i  and Ch ia renze l l i *  us ing  a permanent magnet 

and those  data r epor t ed  by Ehrlich*' . 
observed gram s u s c e p t i b i l i t i e s  as a s t ra ight  l i n e  t o  100; Ca(02)2 

l e d  t o  a va lue  of  24.6 X 10" c . g . s .  u n i t s  f o r  t h e  gram s u s c e p t i b i l i t y .  

The molar  s u s c e p t i b i l i t y  of  the  superoxide was then  c a l c u l a t e d  t o  

be.  2561 X 10-o c . g . s .  u n i t s .  The e f f e c t i v e  magnetic moment ca lcu-  

lated from the Curie Law, equa t ion  ( 3 7 ) ,  was found t o  be 2.45 Bohr 

magnetons. 

T h i s  va lue  f i t t e d  w e l l  

, 
Included i n  Figure 20 are data r epor t ed  

E x t r a p o l a t i o n  of the 

r 

n 
4 

r 

The permanent moment c a l c u l a t e d  from the Curie-Weiss 

Law, equa t ion  (38), u s ing  E h r l i c h ' s  Weiss Constant,  8 = - 9 4 O  , 
was found t o  be 2.84 Bohr magnetons. These moments are i n  

e x c e l l e n t  agreement w i t h  t he  t h e o r e t i c a l  va lue  f o r  two unpaired 

e l e c t r o n s ,  i . e . ,  2.84 Bohr magnetons. 
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FIGURE 20. MEASURED GRAM SUSCEPTIBILITY AS A FUNCTiON OF 
COMPOSITION OF CALCIUM SUPEROXIDE AT 2 5  C.  

extrapola t - - 
value’24.60 ---’I 

0 PRESENT DATA 

(2) / 
DATA OF PETROCELLI br CHIARENZELLI’ L 

0 0 

2 5  

0 

50 
Yo CALCIUM SUPEROXIDE 
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S UHIbA RY 

T h e  work accomplished under NASA c o n t r a c t  MASw-559 i s  summarized 

as fo l lows:  

1) 

on a smal l - sca le  was i n v e s t i g a t e d  i n  an  e f f o r t  t o  syn thes i ze  high 

The r e a c t i o n  of aqueous hydrogen peroxide w i t h  calcium hydroxide 

p u r i t y  calcium superoxide.  P a r t i c u l a r  emphasis was p laced  i n  

s tudy ing  those  r e a c t i o n  cond i t ions  necessary  for optimum superoxide 

y i e l d .  

peroxide was r eac t ed  i n  a 6 .5: l  mole r a t i o  wi th  small q u a n t i t i e s  

( c i r c a  one gram) of  calcium hydroxide; t h e  mixing s t e p  took p l ace  

n e a r  O°C and the r e a c t i o n  mixture  evacuated f o r  4 t o  13 hours  a t  

OOto 25 C .  Under th i se  condi t ions ,  p roducts  were c o n s i s t e n t l y  

obta ined  that  contained 35 t o  60;% calcium superoxlde.  

High y i e l d s  were obta ined  when 50 t o  805 aqueous hydrogen 

When the i n i t i a l  r e a c t i o n  was c a r r l e d  out  a t  O°C with two srams of 

calciuc? superoxide and puEped a t  roon temperature  f o r  8 hour s ,  the 

superoxide product  zverazed 54,; p u r i t y .  

Scale-up of t he  r e a c t i o n  c o p d i t i o c s  t o  S-Lrarn batches o f  calcium 

h2;aroxide r e s u l t e d  i n  products  with lower superoxide a c t i v i t y .  

I n  these cases ,  samples t h a t  were approximately 3O$ pure w i t h  

r e s p e c t  t o  calcium superoxide were synthes ized .  

The i n t r o d u c t i o n  o f  ca ta lys t s  ( T i 0 2  and CdO) a t  the  1% l e v e l  was 

i n v e s t i g a t e d  i n  an  e f f o r t  t o  i nc rease  the y i e l d  of the r e a c t i o n  

and p u r i t y  of the calcium superoxide product .  The use of 

c a t a l y s t s  appeared t o  a i d  the  experimenter  i n  c o n t r o l l i n g  the 



vigorous r e a c t i o n  obtained upon mixing and a l s o  i n  o b t a i n i n g  more 

c o n s i s t e n t  y i e l d s .  They d i d  not ,  however,  s i g n i f i c a n t l y  change 

t h e  y i e l d  of t he  hydroxide-hydrogen peroxide r e a c t i o n .  

2 )  The r e a c t i o n  of calcium peroxide w i t h  aqueous hydrogen 

peroxide was also i n v e s t i g a t e d .  No s i g n i f i c a n t  improvement i n  

the  calcium superoxide y i e l d  was observed. 

3) 
peroxide w i t h  calcium e thoxide  was i n v e s t i g a t e d .  

s o l u t i o n s  of hydrogen peroxide were r eac t ed  w i t h  s o l i d  calcium 

e thoxide  , products  were obtained which contained approximately 20% 

calcium superoxide.  When t h e  peroxide s o l u t i o n  was r e a c t e d  w i t h  

e t h a n o l i c  d i s p e r s i o n s  of  calcium e thoxide  o r  w i t h  e t h a n o l i c  so lu -  

t i o n s  of calcium, samples con ta in ing  from 7 - 15$ calcium super-  

oxide were recovered.  Extreme c a u t i o n  was taken  s i n c e  the  mix- 

tu re s  encountered i n  t h e s e  s t u d l e s  were p o t e n t i a l l y  e x p l o s i v e .  

Although calcium superoxide can be prepared I n  t h i s  manner, t he  

procedure i s  not  recommended. 

The s y n t h e s i s  of calcium superoxide by t h e  r e a c t i o n  of hydrogen 

When 50% e t h a n o l i c  

4 )  
s t u d i e d .  

calcium superoxide,  bu t  only i n  l o w  y i e l d ,  3 - lo$, without  

promise of a q u a n t i t a t i v e  s e p a r a t i o n .  

The r e a c t i o n  of  calcium peroxide w i t h  gaseous ozone was 

These i n v e s t i g a t i o n s  proved s u c c e s s f u l  i n  p repa r ing  

5)  
water vapor  were c a r r i e d  o u t  a t  loo$ r e l a t i v e  humidity.  A t  2 4 O c ,  

the  r e a c t i o n  was shown t o  proceed a t  a r a t e  of 1 .7  ml/gram/min, 

whereas, a t  34OC, t he  ra te  of oxygen e v o l u t i o n  was 3.2 ml/gram/ 

K i n e t i c  s t u d i e s  of  t he  r e a c t i o n  of calcium superoxide w i t h  
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min. T h i s  i n v e s t i g a t i o n  concluded that the water vapor reac ted  

w i t h  the  calcium superoxide t o  form hydrated calcium peroxide and 

produce a molar equ iva len t  of oxygen. 

6 )  T ~ A G  r e a c t i o n  of sodium superoxide with carbon dioxide and 

l water vapor was s t u d i e d  a t  room temperature  and a t  47.7, 71.4, 

I and loo$& r e l a t i v e  humidity.  I n  a l l  cases ,  the r e s p i r a t o r y  

I q u o t i e n t  was observed t o  be n e a r  1.0 i n d i c a t i n g  the  formation of 
1 

bicarbonate ,  as well as carbonate .  With time, the R.Q. i n c r e a s e s  

beyond 1.0 as complete conversion t o  b icarbonate  i s  favored.  A 

mechanism i s  o f fe red  t o  exp la in  the formation of both carbonate  

and b icarbonate  i n  the r e a c t i o n  mixture.  These r e s u l t s  substan-  

t i a t e  and e x p l a i n  the e x c e l l e n t  con t ro l  of t h e  R.Q. obtained i n  

r e c e n t  l a r g e - s c a l e  manned-chamber tests us ing  sodium superoxide (23). 

7) 
calcium superoxide w i t h  carbon dioxide and water vapor a t  room 

temperature  and the same l e v e l s  o f  r e l a t i v e  h u m i d i t y .  The mechanism 

of o;:y&en e.Jolution noted above f o r  the r e a c t i o n  o f  t h e  superoxide 

w i t h  water  vapor was v e r i f i e d  and tha t  f o r  the  abso rp t ion  of carbon 

d ioxide  d iscussed .  The respiratory q u o t i e n t s  were observed t o  vary 

between 0.75 and 2 .4 .  T h i s  v a r i a t i o n  was due t o  the  presence of 

calcium peroxide and calcium hydroxide, which complicated the 

carbon d ioxide  abso rp t ion  process.  

K ine t i c  s t u d i e s  w e r e  a l s o  c a r r i e d  ou t  f o r  the r e a c t i o n  of 

8 )  

Guoy method on potassium superoxide and ozonide,  and on calcium 

superoxide .  The va lues  obtained f o r  the permanent moment of 

potassium ozonide (1.69 Bohr magnetons) and potassium superoxide 

( 2 . 0 7  Bohr magnetons) are i n  e x c e l l e n t  agreement w i t h  the 

Magnetic s u s c e p t i b i l i t y  measurements w e r e  made according t o  the 

I 69 
1 





I 7 

CONCLUSIONS 

It i s  concluded t h a t  the a c t i v e  chemicals most f r e q u e n t l y  considered 

I for a i r  r e v i t a l i z a t i o n  purposes ,  sodium and potassium superoxides ,  

o f f e r  t he  g r e a t e s t  p o t e n t i a l  f o r  p r a c t i c a l  a p p l i c a t i o n s  w i t h i n  

the  f o r s e e a b l e  f u t u r e .  Resu l t s  obtained i n  r e c e n t  s u c c e s s f u l  

eng inee r ing  s t u d i e s  ( 2 3 )  employins sodium superoxide have been 

s u b s t a n t i a t e d  and explained as a r e s u l t  of the  k i n e t i c  s t u d i e s  

c a r r i e d  o u t  i n  t he  course of  t h i s  work on t h e  r e a c t i o n  of  a l k a l i  

metal superoxides  w i t h  water vapor and carbon d iox ide .  

The v a r i o u s  schemes i n v e s t i g a t e d  f o r  t h e  s y n t h e s i s  of  calcium 

Superoxide p o i n t  o u t  t h e  d i f f i c u l t i e s  involved i n  t h e  p r e p a r a t i o n  

of t h i s  compound. The r e a c t i o n  o f  calcium hydroxide o r  peroxide 

w i t h  aqueous hydrogen peroxide has been es tab l i shed  as t h e  most 

re l iab le  means of p repa r ing  calcium superoxide.  The parameters  

necessa ry  for optimum y i e l d  have been es tab l i shed  and i n d i c a t e  

t h a t  the s y n t h e s i s  of  b e t t e r  than 6O;d pure calcium superoxide  w i l l  

be extremely d i f f i c u l t .  

The complexity of the r e a c t i o n s  o f  calcium superoxide w i t h  carbon 

d iox ide  and water vapor,  and the  i n a b i l i t y  t o  p repa re  t h i s  compound 

i n  s i g n i f i c a n t l y  pure form, confirm the  opin ion  that  it i s  n o t  

compe t i t i ve  w i t h  a l k a l i  metal superoxides  a t  t h i s  t i m e .  



RECOMMENDATIONS 

I n  v iew o f  the wel l -def ined chemistry of sodium and potassium 

suyeimxides as a i r  r e v i t a l i z a t i o n  materials, it i s  recommended 

tha t  these compounds be considered ready f o r  use  i n  such a p p l i -  

c a t i o n s .  For  example, the  r e a c t i o n s  of these materials w i t h  

water vapor and carbon d ioxide  i n  a semi-passive u n i t  can be 

r e l i a b l y  c o n t r o l l e d  wi th  p rope r  flow rates and l e v e l s  of 

r e l a t i v e  humidity so as t o  maintain the d e s i r e d  r e s p i r a t o r y  

q u o t i e n t  i n  c losed  environments such as space cab ins .  However, 

the use of these materials i n  small, s e l f - c o n t a i n e d ,  a i r  

r e v i t a l i z a t i o n  u n i t s  f o r  u s e  i n  space s u i t s  and the l i k e  would 

requ5r.e that  they be employed in cann i s t e r - type  dev ices .  The 

hope t h a t  calcium superoxide would help circumvent the c r u s t i n g  

problem encountered i n  a lkal i  metal  superoxide-water  vapor c a n n i s t e r  

r e a c t i o n s  was n o t  r e a l i z e d .  

However, the  p o s s i b i l i t y  exists of t a k i n g  advantage of t h e  thermal 

decomposition c h a r a c t e r i s t i c s  of sodium superoxide o r  l i t h i u m  

peroxide  f o r  u se  i n  a back-pqck r e a c t o r  which would not  r e q u i r e  

water vapor  t o  produce oxygen. Such a r e a c t o r  would be small, 

compact, easy t o  c o n t r o l ,  and s u i t a b l e  f o r  "on-off" a p p l i c a t i o n s .  

The oxides  products  formed, e i ther  sodium oxide o r  l i t h i u m  oxide ,  

ai-e kot.1: e x c e l l e n t  c a r l ~ o n  dioxide scriibLers i n  theixselves . If one 

cr.-rlsloss a u n i t  i n  v?;-,ich the superoxide o r  peroxide ?ias been 

t o t a l l y  decomposed, t h e  oxide formed would then  be employed as a 
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carbon dioxide scrubber  a t  normal ope ra t ing  temperatures .  

t h e  exothermici ty  encountered i n  t h e  superoxide-water  vapor 

r e a c t i o n  has been circumvented, the product  i s  no t  c rus ted  or 

fused,  and t h e  carbon dioxide absorp t ion  process  should occur  

e f f i c i e n t l y  with dry  sodium o r  l i th ium oxide.  

Since 

From an  engineer ing  p o i n t  of view, the a l k a l i  metal superoxides  

are thermal ly  s table ,  i . e .  , a t  normal o p e r a t i n g  temperatures ,  

the  d i s s o c i a t i o n  p res su re  of oxygen i s  extremely 1 6 f o r  the 

conversion of t h e  superoxide t o  t h e  oxide and oxygen. 

less,  reasonable  temperatures  are a t t a i n a b l e  a t  which these 

decompositions w i l l  occur  q u a n t i t a t i v e l y .  

w i l l  decompose t o  the oxide and oxygen a t  about  280 - 30OoC.  

the o t h e r  hand, Shechter  and Shakely have noted that  sodium 

superoxide is  "not thermally s t a b l e  a t  100°C." 

however, t h e i r  e a r l y  s t u d i e s  i n d i c a t e  t h a t  the rate is  very slow. 

P e t r o c e l l i  has shown that the use of pre t rea tment  techniques or 

the u s e  of a s u i t a b l e  c a t a l y s t  can cause the  thermal degrada t ion  

of potassium superoxide t o  proceed t o  completion a t  150°C. 

it i s  f e l t  t ha t  similar techniques w i l l  lower the decomposition 

tempera tures  of sodium superoxide t o  an operable  rey ion .  

Neverthe- 

Potassium superoxide 

On 

A t  t h i s  temperature ,  

Thus, 

Li thium peroxide would be another  a i r  r e v i t a l i z a t i o n  compound of 

i n t e r e s t  because i t  too  w i l l  decompose thermally t o  the  oxide and 

oxygen. Markowitz has noted t h a t  t he  decomposition occurs  a t  3OOnC 

but may be dependent upon sur face  a r e a .  

that  complete e v o l u t i o n  of oxygen i s  a ques t ion  o f  k i n e t i c s  rather 

t h a n  thermodynamics, a s i t u a t i o n  which l ends  i t s e l f  n a t u r a l l y  t o  

the use  of c a t a l y s t s .  

It should be no ted  a g a i n  

73 



Therefore ,  it i s  f u r t h e r  recommended t h a t  investigation of the 

thermal decomposition characteristics of sodium superoxide and 

lithium peroxide be c a r r i e d  o u t .  

i 
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